если полученная дробь должна быть в 1/2 больше исходной, то (х+5)/(х+4) / х/(х+4) = 1/2 (х+5)/(х+4) * (х+4)/х = 1/2 (х+4) сокращается (х+5)/х = 1/2 х+5 = х/2 х = -10.
если полученная дробь должна быть на 1/2 больше исходной, то (х+5)/(х+4) - х/(х+4) = 1/2 (х+5-х)/(х+4) = 1/2 5/(х+4) = 1/2 5/(х+4) = 5/10 х+4 = 10 х = 6.
log₃(x²-9)-log₃((x+3)/(x-3))³>log₃3²; log₃(x²-9)(x-3)³/(x+3)³>log₃9. Логарифмическая функция с основанием 3 возрастает, большему значению функции соответствует большее значение аргумента.
(x-3)⁴/(x+3)²>9 ((x-3)⁴-9(x+3)²)/(x+3)²>0; ((x-3)²-3(x+3))·((x-3)²+3(x+3))>0; (x²-9x)·(x²-3x+18)>0, так как х²-3х+18>0 при любом х, D=9-4·18<0, то x²-9x>0 х(х-9)>0 х<0 или х>9 C учетом ОДЗ получаем ответ.
тогда знаменатель = х+4.
после изменений числ-ль = х+5, знам-ль такой же.
если полученная дробь должна быть в 1/2 больше исходной, то
(х+5)/(х+4) / х/(х+4) = 1/2
(х+5)/(х+4) * (х+4)/х = 1/2
(х+4) сокращается
(х+5)/х = 1/2
х+5 = х/2
х = -10.
следовательно х/(х+4) = -10/-6 = 5/3 = 1 целая 2/3
если полученная дробь должна быть на 1/2 больше исходной, то
(х+5)/(х+4) - х/(х+4) = 1/2
(х+5-х)/(х+4) = 1/2
5/(х+4) = 1/2
5/(х+4) = 5/10
х+4 = 10
х = 6.
следовательно х/(х+4) = 6/10 = 3/5 = 0,6
{x²-9>0;
{(x+3)/(x-3)>0
x∈(-∞;-3)U(3;+∞)
log₃(x²-9)-log₃((x+3)/(x-3))³>log₃3²;
log₃(x²-9)(x-3)³/(x+3)³>log₃9.
Логарифмическая функция с основанием 3 возрастает, большему значению функции соответствует большее значение аргумента.
(x-3)⁴/(x+3)²>9
((x-3)⁴-9(x+3)²)/(x+3)²>0;
((x-3)²-3(x+3))·((x-3)²+3(x+3))>0;
(x²-9x)·(x²-3x+18)>0, так как х²-3х+18>0 при любом х, D=9-4·18<0, то
x²-9x>0
х(х-9)>0
х<0 или х>9
C учетом ОДЗ получаем ответ.
(-3) (3)(9)
О т в е т. x∈(-∞;-3)U(9;+∞)