В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
никлася
никлася
17.01.2023 01:37 •  Алгебра

Составить уравнение касательной к графику функции у= х2 – 3х +7, которая проходит через точку (0; -2), абсцисса точки касания положительна.

Показать ответ
Ответ:
Anonim307
Anonim307
17.05.2022 19:27

(см. объяснение)

Объяснение:

|x+3|-1=|2x-a|\\|2x-a|-|x+3|+1=0

Пусть f(x)=|2x-a|-|x+3|+1.

Тогда нужно, чтобы f(x)=0 имело единственное решение.

Заметим, что |2x-a| играет решающую роль в определении поведения функции (ее возрастания/убывания). Если он открывается со знаком +, то функция возрастает, иначе убывает.

Тогда промежуток убывания: \left(-\infty;\;\dfrac{a}{2}\right].

Промежуток возрастания: \left[\dfrac{a}{2};\;+\infty\right).

Единственное решение будет, если f\left(\dfrac{a}{2}\right)=0.

Получили уравнение:

\left|2\times\dfrac{a}{2}-a\right|-\left|\dfrac{a}{2}+3\right|+1=0,\;\;\left[\begin{array}{ccc}a=-4\\a=-8\end{array}\right;

Значит при данных значениях параметра a |x+3|-1=|2x-a| имеет единственное решение.

Бесконечное множество решений будет, если левая и правая части совпадают (то есть графики наложатся). Но это невозможно, так как m(x)=|x+3|-1 более широкий (прямой угол), чем g(x)=|2x-a| (острый угол) и величина угла от параметра никак не зависит.

Задание выполнено!

Комментарий:

Можно было решать задачу, строя f(x)=|x+3|-1 и g(x)=|2x-a|. Первый график имеет фиксированное положение, а второй бегает влево-вправо. Тогда тоже легко сделать требуемый вывод.

0,0(0 оценок)
Ответ:
Лебеде
Лебеде
12.01.2020 11:07

-62

Объяснение:

f(x)=ax²+bx+c

Определим коэффициенты a, b, с.

1) Коэффициент а находим по формуле y=a(x-m)²+n, где (m;n) - координаты вершины параболы, а (х;у) - координата любой точки параболы, например, (1;1).

m=2; n=2

a(1-2)²+2=1

a(-1)²=-1

a*1=-1

a=-1

2) Коэффициент b находим из формулы для вершины параболы:

  -b/2a = m

  b = -m*2a =-2*2*(-1)=4

3) Коэффициент с найдём как ординату пересечения параболы с осью Оу. Искомая точка (0;-2), значит, с=-2

4) Запишем уравнение параболы: f(x) = -x²+4x-2

5) Находим f(10):

f(10)= -10²+4*10-2 = -100+40-2 = -62

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота