1)Чтобы найти возрастание и убывание функции нужно найти экстремумы и посмотреть как будет вести себя функция при малейшем отклонении.
значит экстремумы в точках -(1;-1) а это значит что минимумов у функции нет ,так же как и максимумов,но убывает на всей числовой прямой . 2) значит экстремумы в точках (-2;16),(2;16) А тут видно что максимумы функции в точках x=2,а минимумы в точках x=-2 убывает на промежутках [-2;2] возрастает (-∞;2]∪[2;+∞) 3)сначала найдём производные 1 производная :
x∉R видим что первой производной нет ,ищем вторую
функция выпукла: (-∞;0) f"(x)<0 функция вогнута (0;+∞) f"(x)>0
1. Площадь прямоугольника - 250 см² Одна сторона - 2,5а см² Вторая сторона - а см² 2,5а*а=250 (a>0) 2,5а²=250 a²=100 a=√100 a=10 (см) - вторая сторона прямоугольника 2,5а=2,5*10=25 (см) - первая сторона прямоугольника 25>10 ответ: Большая сторона прямоугольника равна 25 см
2. x²+15x+q=0 x₁-x₂=3 q=? Для решения задачи применяем теорему Виета. Составим систему(решаем методом сложения): {x₁+x₂=-15 {x₁-x₂=3 => 2x₁=-12 x₁=-6 -6+x₂=-15 x₂=-9 q=x₁*x₂=-6*(-9)=54 ответ: 54
значит экстремумы в точках -(1;-1)
а это значит что минимумов у функции нет ,так же как и максимумов,но убывает на всей числовой прямой .
2)
значит экстремумы в точках (-2;16),(2;16)
А тут видно что максимумы функции в точках x=2,а минимумы в точках x=-2
убывает на промежутках [-2;2]
возрастает (-∞;2]∪[2;+∞)
3)сначала найдём производные
1 производная :
x∉R
видим что первой производной нет ,ищем вторую
функция выпукла:
(-∞;0)
f"(x)<0
функция вогнута
(0;+∞)
f"(x)>0
Площадь прямоугольника - 250 см²
Одна сторона - 2,5а см²
Вторая сторона - а см²
2,5а*а=250 (a>0)
2,5а²=250
a²=100
a=√100
a=10 (см) - вторая сторона прямоугольника
2,5а=2,5*10=25 (см) - первая сторона прямоугольника
25>10
ответ: Большая сторона прямоугольника равна 25 см
2.
x²+15x+q=0
x₁-x₂=3 q=?
Для решения задачи применяем теорему Виета.
Составим систему(решаем методом сложения):
{x₁+x₂=-15
{x₁-x₂=3 => 2x₁=-12
x₁=-6
-6+x₂=-15
x₂=-9
q=x₁*x₂=-6*(-9)=54
ответ: 54