1) х1 = - √13; Второй корень может быть равен √13, потому что в квадратном уравнении произведение корней равно свободному члену. В этом случае свободный член будет рациональным , то есть равен - 13.
(х - √13)(х + √13) = 0
х² - 13 = 0 квадратное уравнение с рациональными коэффициентами
2) х1 = √7 Аналогично получим второй корень х2 = -7 и уравнение
х² - 7 = 0.
3) х1 = 3 - √5 . И в этом случае 2-й корень равен х2 = 3 + √5
Тогда сумма корней равна 2-му коэффициенту уравнения, взятому с противоположным знаком, то есть b = - (3 - √5 + 3 + √5) = - 6
1) х1 = - √13; Второй корень может быть равен √13, потому что в квадратном уравнении произведение корней равно свободному члену. В этом случае свободный член будет рациональным , то есть равен - 13.
(х - √13)(х + √13) = 0
х² - 13 = 0 квадратное уравнение с рациональными коэффициентами
2) х1 = √7 Аналогично получим второй корень х2 = -7 и уравнение
х² - 7 = 0.
3) х1 = 3 - √5 . И в этом случае 2-й корень равен х2 = 3 + √5
Тогда сумма корней равна 2-му коэффициенту уравнения, взятому с противоположным знаком, то есть b = - (3 - √5 + 3 + √5) = - 6
А произведение корней равно свободному члену
c = (3 - √5)(3 + √5) = 9 - 5 = 4
И уравнение имеет вид: х² - 6х + 4 = 0