В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
nadia0666p08frk
nadia0666p08frk
21.10.2022 14:47 •  Алгебра

Составьте уравнение касательной к графику функции y=2x+5-e^x+3 в точке с абсциссой, равной -3

Показать ответ
Ответ:
sicrettry
sicrettry
14.07.2020 12:24
Запишем уравнения касательной в общем виде:
yk = y0 + y'(x0)(x - x0)
По условию задачи x0 = -3, тогда y0 = -3+5/e^3
Теперь найдем производную:
y' = (2x+5e^x+3)' = 2+5e^x
следовательно:
f'(-3) = 2+5^ (-3) = 2+5/e^3
В результате имеем:
y = y0 + y'(x0)(x - x0)
y = -3+5/e^3 + 2+5/e^3(x +3)
или
x = -3
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота