В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Курьяма1
Курьяма1
25.01.2023 17:57 •  Алгебра

Составьте уравнение касательной к графику функции y=cos*(п/6-2x) в точке x=п/2. как это сделать? учитель нам этого подробно не объясняла, !

Показать ответ
Ответ:
VladMirnyi
VladMirnyi
03.10.2020 10:58
Пишем уравнение касательной в общем виде:
у - у0 = f'(x0)(x - x0)
Выделенные компоненты надо найти. Что это за компоненты?
(х0;у0) - это точка касания
f'(x0) - это значение производной   в точке касания)
Будем искать.
х0 = π/2
у0 = Сos(π/6 - 2*π/2) = Сos(π/6 - π) = Cosπ/6 = √3/2
f'(x) = 2Sin(π/6 - 2x)
f'(π/2 ) = 2Sin(π/6 - 2 * π/2) = 2Sin(π/6 - π) = -2Sinπ/6 = -2*1/2 = -1
Всё нашли. Осталось подставить.
у - √3/2 = -1*(х - π/2
у - √3/2 = -х +π/2
у = - х +π/2 + √3/2
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота