1)Все жители не могут быть лгунами, иначе каждый из них сказал бы правду(противоречит условию).
2)Возьмем случайного рыцаря. Из утверждения вытекает, что лжецов на острове больше, чем (2015−1)\2=1007, то есть не менее 1007 лжецов.
3)Возьмем случайного лжеца. Его заявление ложно,т.к. кроме него не более половины жителей острова — лжецы. получается, что кроме него на острове не более 2014\2=1007 лжецов (то есть не более 1007), т.е. вместе с ним лжецов не более 1007.
4)из 2) и 3) следует, что: единственный вариант - это когда на острове ровно 1007 лжецов.
Пояснение:
Чтобы значительно упростить вычисления мы воспользуемся одной из формул сокращённого умножения, а именно формулой разности квадратов:
a² - b² = (a - b) (a + b).
х² - у² = (x - y) (x + y).
1) если х = 75; у = 25 , то:
(x - y) (x + y) =
= (75 - 25) (75 + 25) =
= 50 × 100 =
= 5 000.
2) если х = 10,5; у = 9,5 , то:
(x - y) (x + y) =
= (10,5 - 9,5) (10,5 + 9,5) =
= 1 × 20 =
= 20.
3) если х = 5,89; у = 4,11 , то:
(x - y) (x + y) =
= (5,89 - 4,11) (5,89 + 4,11) =
= 1,78 × 10 =
= 17,8.
4) если х = 3,04; у = 1,96 , то:
(x - y) (x + y) =
= (3,04 - 1,96) (3,04 + 1,96) =
= 1,08 × 5 =
= 5,4.
ответ: 1) 5 000; 2) 20; 3) 17,8; 4) 5,4.
Удачи Вам! :)
2)Возьмем случайного рыцаря. Из утверждения вытекает, что лжецов на острове больше, чем (2015−1)\2=1007, то есть не менее 1007 лжецов.
3)Возьмем случайного лжеца. Его заявление ложно,т.к. кроме него не более половины жителей острова — лжецы. получается, что кроме него на острове не более 2014\2=1007 лжецов (то есть не более 1007), т.е. вместе с ним лжецов не более 1007.
4)из 2) и 3) следует, что: единственный вариант - это когда на острове ровно 1007 лжецов.