Представим это всё в виде графа: вершины - дети. Проведём от одной вершины к другой стрелку, если первый ребенок может писать 2-му СМС. Пусть, вершин К. Из каждой вершины выходит n стрелок, поэтому всего стрелок n*K. При этом, для любой пары человек, между ними должна быть хотя-бы 1 стрелка. Значит, стрелок хотя-бы K*(K-1)/2 (именно столько пар детей).
n*K ≥ K*(K-1)/2
n ≥ (K-1)/2
2n+1 ≥ K
Значит, наибольшее кол-во детей равно 2n+1. Приведём пример, когда детей ровно 2n+1.
Расставим их по кругу, и пусть каждый пишет СМС следующим n по часовой стрелке. Тогда любой человек получает СМС от предыдущих n, а пишет следующим n, то есть охвачены все 2n+1 человек (включая его).
Возьмём всю работу = 1 1 экскаватор , работая один, выполнит всю работу за (х + 10) дней 2 экскаватор, работая один, выполнит всю работу за х дней в день 1 экскаватор делает 1/(х + 10) всей работы в день 2 экскаватор делает 1/х всей работы в день оба , работая вместе , делают 1/12 всей работы 1/(х + 10) + 1/ х = 1/12 |· 12х(х + 10) 12 х + 12( х + 10) = х(х + 10) 12 х + 12х +120 = х² + 10 х х²- 14 х - 120 = 0 по т. виета х1 = 20 и х2 = 6
2n+1
Объяснение:
Представим это всё в виде графа: вершины - дети. Проведём от одной вершины к другой стрелку, если первый ребенок может писать 2-му СМС. Пусть, вершин К. Из каждой вершины выходит n стрелок, поэтому всего стрелок n*K. При этом, для любой пары человек, между ними должна быть хотя-бы 1 стрелка. Значит, стрелок хотя-бы K*(K-1)/2 (именно столько пар детей).
n*K ≥ K*(K-1)/2
n ≥ (K-1)/2
2n+1 ≥ K
Значит, наибольшее кол-во детей равно 2n+1. Приведём пример, когда детей ровно 2n+1.
Расставим их по кругу, и пусть каждый пишет СМС следующим n по часовой стрелке. Тогда любой человек получает СМС от предыдущих n, а пишет следующим n, то есть охвачены все 2n+1 человек (включая его).