видим здесь квадратное уравнение относительно tg x.
а ещё видим, что сумма показателей степеней равна 1-4+3 = 0, поэтому один корень =1, второй по т.Виетта =3
уравнение распадается на совокупность
tg x = 1
tg x = 3
выписываем решение:
x = arctg(1) + pi n, где ncZ
x = arctg(3) + pi k, где kcZ
ну можно ещё вспомнить, что arctg(1) = pi/4
2) вспоминаем формулу косинуса двойного угла:
cos 2a = 2 cos^2 a - 1
если a = x/2, то исходное уравнение может быть представлено как
cos x + 1 + sin x = 0
вобщем, тут уже очевидно, что либо cos x =0, sin x =-1, либо cos x=-1, sin x =0
но чтобы совсем честно решать, придётся поколдовать.
синус направо и всё в квадрат!
(cos x +1)^2 = sin^2 x
cos^2 x + 2 cos x + 1 = 1 - cos^2 x
2 cos^2 x + 2 cos x = 0
cos x (cos x + 1) = 0
произведение обращается в ноль если хотя бы один из множителей обращается в ноль. значит опять совокупность:
cos x = 0
cos x = -1
x = pi/2 + pi n , ncZ,
x = pi + 2pi k, kcZ
но тут небольшая грабля. чуть выше мы возводили к вадрат. а нулевому косинусу соответствуют два значения синуса: +1 и -1. и один из них нам не подходит.
вобщем, проверяем корни и убеждемся, что из первой последователности половина значений выпадает (pi/2 + 2pi n НЕ являются корями. а pi/2 + pi + 2pi n - удовлетворяют)
1) tg x + 3/tg x = 4, ОДЗ tg x <> 0
множим уравнение на tg(x), который по ОДЗ не ноль
(tg x)^2 - 4 tg x + 3 = 0
видим здесь квадратное уравнение относительно tg x.
а ещё видим, что сумма показателей степеней равна 1-4+3 = 0, поэтому один корень =1, второй по т.Виетта =3
уравнение распадается на совокупность
tg x = 1
tg x = 3
выписываем решение:
x = arctg(1) + pi n, где ncZ
x = arctg(3) + pi k, где kcZ
ну можно ещё вспомнить, что arctg(1) = pi/4
2) вспоминаем формулу косинуса двойного угла:
cos 2a = 2 cos^2 a - 1
если a = x/2, то исходное уравнение может быть представлено как
cos x + 1 + sin x = 0
вобщем, тут уже очевидно, что либо cos x =0, sin x =-1, либо cos x=-1, sin x =0
но чтобы совсем честно решать, придётся поколдовать.
синус направо и всё в квадрат!
(cos x +1)^2 = sin^2 x
cos^2 x + 2 cos x + 1 = 1 - cos^2 x
2 cos^2 x + 2 cos x = 0
cos x (cos x + 1) = 0
произведение обращается в ноль если хотя бы один из множителей обращается в ноль. значит опять совокупность:
cos x = 0
cos x = -1
x = pi/2 + pi n , ncZ,
x = pi + 2pi k, kcZ
но тут небольшая грабля. чуть выше мы возводили к вадрат. а нулевому косинусу соответствуют два значения синуса: +1 и -1. и один из них нам не подходит.
вобщем, проверяем корни и убеждемся, что из первой последователности половина значений выпадает (pi/2 + 2pi n НЕ являются корями. а pi/2 + pi + 2pi n - удовлетворяют)
ответ
x = 3pi/2 + 2pi n , ncZ,
x = pi + 2pi k, kcZ
Вариант А1
№1
А) х²-4х+3=0
D=16-12=5=2²
x1=(4-2)/2=1
x2=(4+2)/2=3
Б) х²+9х=0
Х(х+9)=0
Х=0 или х+9=0
Х=-9
В) 7х²-х-8=0
D=1+224=225=15²
X1=(1-15)/14=-1
X2=(1+15)/14=16/14=8/7=1 целая 1/7
Г) 2x²-50=0
2x²=50
X²=25
X=5 или x=-5
№2
Пусть х (см) - ширина прямоугольника, тогда (х+5) (см) - длина прямоугольника. Площадь прямоугольника 36 см², прощадь считается по формуле а*б
Составим и решим уравнение:
36=х*(х+5)
Х²+5х-36=0
D=25+144=169=13²
X1=(-5-13)/2=-9
X2=(-5+13)/2=4
Так как значение стороны не может принимать отрицательное значение, то ширина прямоугольника равна 4 см, а длина (4+5)=9
№3
Умножим обе части на 7
7у²-9у+2=0
D=81-56=25=5²
У1=(9+5)/7=2
У2=(9-5)/7=2/7
№4
Если х=4, то
16+4-а=0
20-а=0
а=20
Найдем второй корень уравнения
Х²+х-20=0
D=1+80=81=9²
X1=(-1-9)/2=-5
X2=(-1+9)/2=4
Так как корень 4 нам уже известен, то второй корень будет х=-5
ответ: а=20, второй корень равен -5