Как решать квадратные уравнения? Смотри. Уравнение: ах^2+bx+c=0 называется квадратным. Например, х^2-х-6=0 Решается оно через дискриминант. Точное определение дискриминанта, к сожалению, дать не смогу. Находится он по формуле: b^2-4ac. Найдём дискриминант нашего уравнения: Д=(-1)^2-4*1*(-6)=1+24=25. А теперь нам предстоит найти корни уравнения. В квадратном уравнении, как правило, их 2. Реже - 1 корень, или вовсе корней нет. Всё зависит от дискриминанта. Если он больше нуля - то 2 корня, и формула: х_1,2=(-b(+-)√Д) / 2а. Если дискриминант равен 0, то 1 корень, и формула: х=-b/2a. А если дискриминант меньше нуля - то корней нет. Найдём корни нашего уравнения: Их у нас два, так как дискриминант больше нуля: х_1,2=(1+-√25)/2=(1+-5)/2. Это формула двух корней. А теперь найдём каждый корень по отдельности: х_1=(1+5)/2=6/2=3; х_2=(1-5)/2=-4/2=-2. Корнями будут являться числа 3 и -2. Итак, запишем теперь ответ: х_1=3; х_2=-2.
Всё просто! Со временем ты будешь щелкать эти уравнения, как семечки! ;)
А решение твоих уравнений находится во вложении, только там кратко, не запутайся)
Решаем систему уравнений с двумя неизвестными подстановки: (1) x+y=15, (2) xy=8; Из (1) выражаем х: (1) x=15-y; Полученное выражение подставляем во (2) и решаем квадратное уравнение: (2) (15-y)y=8; -y²+15y-8=0; y²-15y+8=0; D=225-32=193; y1=(15-√193)/2; y2=(15+√193)/2; Полученные значения у подставляем в (1) и находим значения х: x1=15-(15-√193)/2=(30-15+√193)/2=(15+√193)/2; x2=15-(15+√√193)/2=(30-15-√193)/2=(15-√193)/2. Находим значение данного выражения: x1²+y1²=(15+√193)²/4 +(15-√193)²/4=(225+30√193+193+225-30√193+193)/4 =(450+386)/4=836/4=209. x2²+y2²=(15-√193)²/4+(15+√193)²/4=(225-30√193+193+225+30√193+193)/4 =(450+386)/4=836/4=209. ответ: 209. Можно и проще по формуле x²+y²=(x+y)²-2xy=15²-2*8=225-16=209.
Как решать квадратные уравнения?
Смотри. Уравнение: ах^2+bx+c=0 называется квадратным.
Например, х^2-х-6=0
Решается оно через дискриминант. Точное определение дискриминанта, к сожалению, дать не смогу. Находится он по формуле: b^2-4ac.
Найдём дискриминант нашего уравнения:
Д=(-1)^2-4*1*(-6)=1+24=25.
А теперь нам предстоит найти корни уравнения. В квадратном уравнении, как правило, их 2. Реже - 1 корень, или вовсе корней нет. Всё зависит от дискриминанта.
Если он больше нуля - то 2 корня, и формула: х_1,2=(-b(+-)√Д) / 2а.
Если дискриминант равен 0, то 1 корень, и формула: х=-b/2a.
А если дискриминант меньше нуля - то корней нет.
Найдём корни нашего уравнения: Их у нас два, так как дискриминант больше нуля:
х_1,2=(1+-√25)/2=(1+-5)/2.
Это формула двух корней. А теперь найдём каждый корень по отдельности:
х_1=(1+5)/2=6/2=3;
х_2=(1-5)/2=-4/2=-2.
Корнями будут являться числа 3 и -2.
Итак, запишем теперь ответ: х_1=3; х_2=-2.
Всё просто! Со временем ты будешь щелкать эти уравнения, как семечки! ;)
А решение твоих уравнений находится во вложении, только там кратко, не запутайся)
(1) x+y=15,
(2) xy=8;
Из (1) выражаем х:
(1) x=15-y;
Полученное выражение подставляем во (2) и решаем квадратное уравнение:
(2) (15-y)y=8;
-y²+15y-8=0;
y²-15y+8=0;
D=225-32=193;
y1=(15-√193)/2;
y2=(15+√193)/2;
Полученные значения у подставляем в (1) и находим значения х:
x1=15-(15-√193)/2=(30-15+√193)/2=(15+√193)/2;
x2=15-(15+√√193)/2=(30-15-√193)/2=(15-√193)/2.
Находим значение данного выражения:
x1²+y1²=(15+√193)²/4 +(15-√193)²/4=(225+30√193+193+225-30√193+193)/4
=(450+386)/4=836/4=209.
x2²+y2²=(15-√193)²/4+(15+√193)²/4=(225-30√193+193+225+30√193+193)/4
=(450+386)/4=836/4=209.
ответ: 209.
Можно и проще по формуле
x²+y²=(x+y)²-2xy=15²-2*8=225-16=209.