1. Нет. Одночлен - это произведение числовых и буквенных множителей и их степеней.
2. Да
3. Да. Или если точнее, то буквенный множитель (коэффициент) - число, стоящее перед буквой.
4. Да
5. Нет. Коэффициент одночлена - числовой множитель одночлена, записанный в стандартном виде.
6. Да
7. Нет. Подобные одночлены - одночлены, имеющие общий коэффициент.
8. Да
9. Да
10. Да. Если точнее, то одночлены, записанные в стандартном виде, называется многочленом стандартного вида.
11. Нет. Чтобы привести подобные члены, нужно сложить числовые множители и умножить на буквенное выражение.
12. Да
13. Да.
Напишите кубическое уравнение, корни которого обратны корням уравнения х³ - 6х² + 12х – 18 = 0, а коэффициент при х³ равен 2.1. По теореме Виета для кубического уравнения имеем: х₁ + х₂ + х₃ = 6, х₁х₂ + х₁х₃ + х₂х₃ = 12, х₁х₂х₃ = 18. 2. Составляем обратные величины данным корням и для них применяем обратную теорему Виета. 1/х₁ + 1/х₂ + 1/х₃ = ( х₂х₃ + х₁х₃ + х₁х₂)/х₁х₂х₃ = 12/18 = 2/3. 1/х₁х₂ + 1/х₁х₃ + 1/х₂х₃ = (х₃ + х₂ + х₁)/х₁х₂х₃ = 6/18 = 1/3, 1/ х₁х₂х₃ = 1/18.Получаем уравнение х³ +2/3х² + 1/3х – 1/18 = 0 · 2 ответ: 2х³ + 4/3х² + 2/3х -1/9 = 0.
Объяснение:
1. Нет. Одночлен - это произведение числовых и буквенных множителей и их степеней.
2. Да
3. Да. Или если точнее, то буквенный множитель (коэффициент) - число, стоящее перед буквой.
4. Да
5. Нет. Коэффициент одночлена - числовой множитель одночлена, записанный в стандартном виде.
6. Да
7. Нет. Подобные одночлены - одночлены, имеющие общий коэффициент.
8. Да
9. Да
10. Да. Если точнее, то одночлены, записанные в стандартном виде, называется многочленом стандартного вида.
11. Нет. Чтобы привести подобные члены, нужно сложить числовые множители и умножить на буквенное выражение.
12. Да
13. Да.
Напишите кубическое уравнение, корни которого обратны корням уравнения х³ - 6х² + 12х – 18 = 0, а коэффициент при х³ равен 2.1. По теореме Виета для кубического уравнения имеем: х₁ + х₂ + х₃ = 6, х₁х₂ + х₁х₃ + х₂х₃ = 12, х₁х₂х₃ = 18. 2. Составляем обратные величины данным корням и для них применяем обратную теорему Виета. 1/х₁ + 1/х₂ + 1/х₃ = ( х₂х₃ + х₁х₃ + х₁х₂)/х₁х₂х₃ = 12/18 = 2/3. 1/х₁х₂ + 1/х₁х₃ + 1/х₂х₃ = (х₃ + х₂ + х₁)/х₁х₂х₃ = 6/18 = 1/3, 1/ х₁х₂х₃ = 1/18.Получаем уравнение х³ +2/3х² + 1/3х – 1/18 = 0 · 2 ответ: 2х³ + 4/3х² + 2/3х -1/9 = 0.
Объяснение: