а) 3 прямые имеют наибольшее число точек пересечения 3 ,
б) 4 прямые - 6 точек пересечения ,
в) 5 прямых - 10 точек пересечения ,
г) n прямых - \frac{n(n-1)}{2}
2
n(n−1)
точек пересечения .
Решение. Заметим, что наибольшее число точек попарных пересечений получается, если каждая прямая пересекается с каждой и при этом никакие три прямые не пересекаются в одной точке. В этом случае количество точек попарных пересечений равно количеству пар прямых из данного множества n прямых. Как мы знаем, это число равно \frac{n(n-1)}{2}
Пояснение:
Чтобы значительно упростить вычисления мы воспользуемся одной из формул сокращённого умножения, а именно формулой разности квадратов:
a² - b² = (a - b) (a + b).
х² - у² = (x - y) (x + y).
1) если х = 75; у = 25 , то:
(x - y) (x + y) =
= (75 - 25) (75 + 25) =
= 50 × 100 =
= 5 000.
2) если х = 10,5; у = 9,5 , то:
(x - y) (x + y) =
= (10,5 - 9,5) (10,5 + 9,5) =
= 1 × 20 =
= 20.
3) если х = 5,89; у = 4,11 , то:
(x - y) (x + y) =
= (5,89 - 4,11) (5,89 + 4,11) =
= 1,78 × 10 =
= 17,8.
4) если х = 3,04; у = 1,96 , то:
(x - y) (x + y) =
= (3,04 - 1,96) (3,04 + 1,96) =
= 1,08 × 5 =
= 5,4.
ответ: 1) 5 000; 2) 20; 3) 17,8; 4) 5,4.
Удачи Вам! :)
а) 3 прямые имеют наибольшее число точек пересечения 3 ,
б) 4 прямые - 6 точек пересечения ,
в) 5 прямых - 10 точек пересечения ,
г) n прямых - \frac{n(n-1)}{2}
2
n(n−1)
точек пересечения .
Решение. Заметим, что наибольшее число точек попарных пересечений получается, если каждая прямая пересекается с каждой и при этом никакие три прямые не пересекаются в одной точке. В этом случае количество точек попарных пересечений равно количеству пар прямых из данного множества n прямых. Как мы знаем, это число равно \frac{n(n-1)}{2}
2
n(n−1)