Объяснение:
пусть a/b и с/d несократимые дроби
рассмотрим два случая
1) при b=d
a/b+с/d=a/b+с/b=(a+с)/b может быть целым числом
например 1/2+1/2=2/2=1
2) пусть a/b и с/d несократимые дроби и b не равно d
тогда
a/b+с/d=(ad+bc)/(bd) предположим что эта дробь является целым числом
тогда (ad+bc)=bdn, где n некоторое натуральное число
тогда ad=bdn-bc=b(dn-c)
ad=b(dn-c) ⇒ так как a не делится на b по условию то ⇒ d делится на b
тогда d=bm , где m некоторое натуральное число
тогда исходная сумма будет иметь вид
a/b+с/bm=(am+c)/bm и если это целое число то
am+c=bmk, где k некоторое натуральное число
c=bmk-am=m(bk-a) ⇒ с делится на m но если так то дробь с/d=c/bm сократима что противоречит условию задачи
⇒ a/b+с/d при b не равно d не является и не может быть целым числом
⇒ сумма двух положительных несократимых дробей равна целому числу только в том случае, когда знаменатели этих дробей равны между собой.
ответ: 1
Члены геометрической последовательности связаны следующим соотношением:
Нам даны три последовательных члена, для определённости дадим им номера 1, 2, 3.
Выпишем взаимосвязь 1-ого и 2-ого и 2-ого и 3-его:
Чтобы три числа были членами последовательности, должны выполнять оба равенства. Составим систему уравнений:
Поделим уравнения друг на друга (это действие можно выполнить, так как q ≠ 0, (7k + 1) ≠ 0, k + 15 ≠ 0):
Сокращаем на q ≠ 0 и перемножаем дроби "крест-накрест" (знаменатели в ноль не обращаются, учтено выше).
k₁ не является целым, поэтому не подходит. Остаётся один ответ k = 1.
Объяснение:
пусть a/b и с/d несократимые дроби
рассмотрим два случая
1) при b=d
a/b+с/d=a/b+с/b=(a+с)/b может быть целым числом
например 1/2+1/2=2/2=1
2) пусть a/b и с/d несократимые дроби и b не равно d
тогда
a/b+с/d=(ad+bc)/(bd) предположим что эта дробь является целым числом
тогда (ad+bc)=bdn, где n некоторое натуральное число
тогда ad=bdn-bc=b(dn-c)
ad=b(dn-c) ⇒ так как a не делится на b по условию то ⇒ d делится на b
тогда d=bm , где m некоторое натуральное число
тогда исходная сумма будет иметь вид
a/b+с/bm=(am+c)/bm и если это целое число то
am+c=bmk, где k некоторое натуральное число
c=bmk-am=m(bk-a) ⇒ с делится на m но если так то дробь с/d=c/bm сократима что противоречит условию задачи
⇒ a/b+с/d при b не равно d не является и не может быть целым числом
⇒ сумма двух положительных несократимых дробей равна целому числу только в том случае, когда знаменатели этих дробей равны между собой.
ответ: 1
Объяснение:
Члены геометрической последовательности связаны следующим соотношением:
Нам даны три последовательных члена, для определённости дадим им номера 1, 2, 3.
Выпишем взаимосвязь 1-ого и 2-ого и 2-ого и 3-его:
Чтобы три числа были членами последовательности, должны выполнять оба равенства. Составим систему уравнений:
Поделим уравнения друг на друга (это действие можно выполнить, так как q ≠ 0, (7k + 1) ≠ 0, k + 15 ≠ 0):
Сокращаем на q ≠ 0 и перемножаем дроби "крест-накрест" (знаменатели в ноль не обращаются, учтено выше).
k₁ не является целым, поэтому не подходит. Остаётся один ответ k = 1.