n^3 + 3n^2+8n + 82 Метод. мат индукции 1) При n=1 1+3+8+82=94 не делится на 3 2) Пусть при n=k k^3 + 3k^2+8k + 82 выполняется деление на 3 3) n=k+1 (k+1)^3 + 3(k+1)^2+8(k+1) + 82=k^3+3k^2+3k+1+3k^2+6k+3+8k+8+82= (k^3+3k^2+8k+82)+3k+3k^2+6k+3+1=(k^3+3k^2+8k+82)+3(k+k^2+2k+1)+1 Первое слагаемое делится по предположению, второе, так в произведении есть множитель, 1 не делится на 3 - противоречие, значит предположение неверно и исходное выражение не делится на 3
Метод. мат индукции
1) При n=1 1+3+8+82=94 не делится на 3
2) Пусть при n=k k^3 + 3k^2+8k + 82 выполняется деление на 3
3) n=k+1
(k+1)^3 + 3(k+1)^2+8(k+1) + 82=k^3+3k^2+3k+1+3k^2+6k+3+8k+8+82= (k^3+3k^2+8k+82)+3k+3k^2+6k+3+1=(k^3+3k^2+8k+82)+3(k+k^2+2k+1)+1
Первое слагаемое делится по предположению, второе, так в произведении есть множитель, 1 не делится на 3 - противоречие, значит предположение неверно и исходное выражение не делится на 3