Стоимость телевизора ежегодно уменьшается на одно и то же число процентов от предыдущей цены. Найди, на сколько процентов каждый год уменьшалась цена, если телевизор был выставлен на продажу за 20700 рублей, а через два года его продали за 13248 рублей.
Длина ровной дороги в 1,5 раза длиннее, чем 2S, то есть равна
1,5·2S=3S км .
Скорость девочки по ровной дороге равна V₁=х км/час.
Тогда время, затраченное на прохождение ровной дороги равно
t₁=3S/x =3·(S/x)(час).
Скорость девочки на спуске в 2 раза больше, чем по ровной дороге, то есть равна V₂=2x (км/час).
Время, за которое девочка спустится, равно t₂=S/V₂=S/2x (час) .
Скорость девочки на подъёме в 1,5 раза меньше, чем по ровной дороге, то есть равна V₃=x/1,5=2x/3 (км/час) .
Время, за которое девочка совершит подъём, равно
t₃=S/V₃=S/(2x/3)=3S/2x=3·(S/2x) (час)
Время спуска и подъёма равно
t₂+t₃=S/2x+3(S/2x)=4(S/2x)=2(S/x) (час)
Сравним это с t₁=3(S/x) .
Время, затраченное на прохождение ровной дороги,
больше в t₁/(t₂+t₃)=3/2=1,5 раза.
Время ,затраченное на прохождение дороги со спуском и подъёмом,
меньше в (t₂+t₃)/t₁=2/3 раза.
-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.