I.
1) 18у⁵-12ху²+9у³= 3у²·(6у³-4х+3у)
2) - 14аb³с²-21a²bc²-28a³b²c= -7abc·(2b²c+3ac+4a²b)
II.
1) a(3x-2y)+b(3x-2y) = (3x-2y)·(a+b)
2) (x+3)(2y-1)-(x+3)(3y+2)= (x+3)·(2y-1-3y-2)=(x+3)·(-y-3) = - (x+3)·(y+3)
III.
1) 3x-x²=0
x· (3-x) = 0
x₁ = 0;
3-x = 0 => x₂ = 3
ответ: {0; 3}
2) y²+5y=0
y·(у+5) = 0
у₁ = 0
у+5=0 => y₂ = -5
ответ: {0; -5}
IV.
27³+3⁷ = (3³)³ + 3⁷ = 3⁹ + 3⁷ = 3⁷· (3² + 1) = 3⁷· (9+1) = 3⁷ · 10
Понятие "кратно 10" означает "деление на 10 нацело"
(3⁷·10) : 10 = 3⁷ Доказано!
I.
1) 18у⁵-12ху²+9у³= 3у²·(6у³-4х+3у)
2) - 14аb³с²-21a²bc²-28a³b²c= -7abc·(2b²c+3ac+4a²b)
II.
1) a(3x-2y)+b(3x-2y) = (3x-2y)·(a+b)
2) (x+3)(2y-1)-(x+3)(3y+2)= (x+3)·(2y-1-3y-2)=(x+3)·(-y-3) = - (x+3)·(y+3)
III.
1) 3x-x²=0
x· (3-x) = 0
x₁ = 0;
3-x = 0 => x₂ = 3
ответ: {0; 3}
2) y²+5y=0
y·(у+5) = 0
у₁ = 0
у+5=0 => y₂ = -5
ответ: {0; -5}
IV.
27³+3⁷ = (3³)³ + 3⁷ = 3⁹ + 3⁷ = 3⁷· (3² + 1) = 3⁷· (9+1) = 3⁷ · 10
Понятие "кратно 10" означает "деление на 10 нацело"
(3⁷·10) : 10 = 3⁷ Доказано!
( x + 2)²( (x + 2)² - 4) = 5
( x + 2)²( x² + 4x + 4 - 4) = 5
( x + 2)²( x² + 4x) = 5
(x² + 4x)(x² + 4x + 4) = 5
x⁴ + 4x³ + 4x² + 4x³ + 16x² + 16x - 5 = 0
x⁴ + 8x³ + 20x² +16x- 5 =0
Разложим на множители и решим:
(x² + 4x - 1)(x² + 4x + 5) = 0
Произведение равно 0,когда один из множителей равен 0,значит,
x² + 4x - 1 = 0
D = b² - 4ac = 16 - 4×(-1) = 20
x1 = ( - 4 + 2√5) / 2 = - 2(2 - √5)/2 = - (2 - √5) = √5 - 2
x2 = ( - 4 - 2√5)/2 = - 2( 2 + √5) / 2 = - ( 2 + √5) = - √5 - 2
x² + 4x + 5 = 0
D = b² - 4ac = 16 - 4×5 = - 4 - дискриминант отрицательный,значит,корней нет.
ответ: x1 = √5 - 2, x2 = - √5 - 2.