Стороны прямоугольника равны х - 1 см и х +1 см, а сторона квадрата равна х см. сравните площади данных четырехугольников использую формулы сокращённого умножения
Выражение, стоящее в правой части равенства может принимать как полжительные значения, так и отрицательные значения и ноль. Всё зависит от числового значения а. По определению модуля числа
По теореме Виета при . Поэтому . Знаки квадратного трёхчлена: + + + (2) - - - (3) + + +
В этом случае получаем два решения (при x>12 и при х<12) . А если , то решений уравнение не будет иметь,так как модуль не может принимать отрицательные значения. Это будет в случае . ответ: уравнение имеет одно решение при а=2 и а=3; уравнение имеет 2 решения при а∈(-∞,2)∪(3,+∞) ; уравнение не имеет решений при а∈(2,3) .
1. y= (1/x) + 34
2.(не уверен, но вроде) y=∛(1-х^3 )
3. да
Объяснение:
1. как делается обратная функция: мы выражаем х через у, а потом в получившейся формуле меняем х на у
х-34=1/у
х=(1/у)+34
у=(1/х)+34
2. у^3=1-х^3
х^3=1-у^3
у=∛(1-х^3 )
3. что мы сделаем: мы возьмём произвольные х1 и х2, такие что х1>х2
и приведем к виду функции, если окажется, что выражение с х1 остается большим значит функция увеличивается, нет - наоборот.(не уверен в
х1>х2
-7х1<-7х2
10-7х1<10-7х2
выражение с х2 больше значит функция уменьшается, ответ да.
Выражение, стоящее в правой части равенства может принимать как полжительные значения, так и отрицательные значения и ноль. Всё зависит от числового значения а. По определению модуля числа
По теореме Виета при .
Поэтому .
Знаки квадратного трёхчлена: + + + (2) - - - (3) + + +
В этом случае получаем два решения (при x>12 и при х<12) .
А если , то решений уравнение не будет иметь,так как модуль не может принимать отрицательные значения. Это будет в случае .
ответ: уравнение имеет одно решение при а=2 и а=3;
уравнение имеет 2 решения при а∈(-∞,2)∪(3,+∞) ;
уравнение не имеет решений при а∈(2,3) .