9 x^2 - 25 x^4= 0; 9x^2 ( 1 - 25x^4 / 9) = 0; (3x)^2 * ( 1- 5x/2) (1+ 5x/2) = 0; x1 = 0; Четный корень, так как он повторяется x2 = - 2,5; x3 = 2,5. Теперь методом интервалов определим знаки производной y' + - четн - + - 2,5 02,5x y возр убыв убыв возр. max min Находим знаки производной на этих промежутках , подставляя числа из промежутков в в уравнение производной y'=9 x^2 - 25 x^4; значение х= 3 - это число из самой правой области (0т 2,5 до бескон-ти). Дальше чередуем, не забываем о том, что через точку х=0 проходим, не меняя знак. Таким образом , точка минимума - это точка х = 2,5. Именно в ней производная меняет знак с плюса на минус. У Вас получилось 2 точки минимума, потому что Вы наверняка не учли, что здесь 4 корня, 2 из которых одинаковые (х=0 и х =0). При переходе через корень четной степени( в данном случае второй степени) знак не меняется
y'(x) = - 25 x^4 + 9 x^2 = 9 x^2 - 25 x^4;
9 x^2 - 25 x^4= 0;
9x^2 ( 1 - 25x^4 / 9) = 0;
(3x)^2 * ( 1- 5x/2) (1+ 5x/2) = 0;
x1 = 0; Четный корень, так как он повторяется
x2 = - 2,5;
x3 = 2,5.
Теперь методом интервалов определим знаки производной
y' + - четн - +
- 2,5 02,5x
y возр убыв убыв возр.
max min
Находим знаки производной на этих промежутках , подставляя числа из промежутков в в уравнение производной y'=9 x^2 - 25 x^4;
значение х= 3 - это число из самой правой области (0т 2,5 до бескон-ти). Дальше чередуем, не забываем о том, что через точку х=0 проходим, не меняя знак.
Таким образом , точка минимума - это точка х = 2,5. Именно в ней производная меняет знак с плюса на минус.
У Вас получилось 2 точки минимума, потому что Вы наверняка не учли, что здесь 4 корня, 2 из которых одинаковые (х=0 и х =0). При переходе через корень четной степени( в данном случае второй степени) знак не меняется
При каких значениях x выражение имеет смысл:
1) 2x – 3; при любых, так как
х = - 1 -2 - 3 = -5
х = 0 -3
х = 1 2 - 3 = -1
2) х +3; при любых, так как
х = - 1 3 - 1 = 2
х = 0 3
х = 1 1 + 3 = 4
3) 2x2 -х – 1; при любых, так как
х = - 1 2(-1)2 - -1 -1 = 2 + 1 -1 = 2
х = 0 -1
х = 1 2(1)2 -1 -1 = 0
4) 2х-4 при любых, так как
х = - 1 -2 - 4 = -6
х = 0 -4
х = 1 2 - 4 = -2
5) 2-3х2 при любых, так как
х = - 1 2 - 3(-1)2 = 2 - 3 = -1
х = 0 2
х = 1 2 - 3(1)2 = 2 - 3 = -1