Формули для периметра та площі прямокутника: Р = 2(a + в), S = а ∙ в. З іншої сторони Р = 40 м
2(а + в) = 40, а + в = 20
Нехай а = х, тоді в = 20 – х.
За змістом задачі число х задовольняє нерівність
0 < х < 20, тобто належить інтервалу (0; 20) .
Складаємо функцію:
S(x) = x(20 – x)
Функція S(x) неперервна на всій числовій прямій, тому будемо шукати її
найбільше і найменше значення на відрізку [0;20] .
Знаходимо критичні точки:
S '(x) = 20 – 2x; 20 – 2x = 0, x = 10
10 Є [0;20]
S(10) = 100; S(0) = 0; S(20) = 0
Найбільшого значення на відрізку [0;20] функція S набуває, якщо х = 10. Якщо
вона досягає найбільшого значення всередині відрізка [0;20], то вона набуває найбільшого значення і всередині інтервала (0, 20). Значить а = 10, тоді в = 20 – 10 = 10.
Отже, прямокутна ділянка буде мати найбільшу площу, якщо її розміри 10х10.
Cos(5*x) = 0 5*x = acos(0) + pi*n, или 5*x = pi/2 + pi*n, где n - любое целое число разделим обе части полученного ур-ния на 5 получим ответ: x = (pi/2 + pi*n)/5 sin4x=0 4*x = asin(0) + 2*pi*n, или 4*x = 2*pi*n разделим обе части полученного ур-ния на 4 получим ответ: x = pi*n/2 sinx/2=0 x/2 = asin(0) + 2*pi*n, или x/2 = 2*pi*n разделим обе части полученного ур-ния на 1/2 получим ответ: x = 4*pi*n cosx/3=0 x/3 = acos(0) + pi*n, или x/3 = pi/2 + pi*n разделим обе части полученного ур-ния на 1/3 получим ответ: x = 3*(pi/2 + pi*n) sin(3x+п/4)=0 3*x + pi/4 = asin(0) + 2*pi*n, или 3*x + pi/4 = 2*pi*n перенесём pi/4 в правую часть ур-ния с противоположным знаком, итого: 3*x = -pi/4 + 2*pi*n разделим обе части полученного ур-ния на 3 получим ответ: x = (-pi/4 + 2*pi*n)/3 cos(8x+п/3)=0 8*x + pi/3 = acos(0) + pi*n, или 8*x + pi/3 = pi/2 + pi*n перенесём pi/3 в правую часть ур-ния с противоположным знаком, итого: 8*x = pi/6 + pi*n разделим обе части полученного ур-ния на 8 получим ответ: x = (pi/6 + pi*n)/8 sin(x/7+п/3)=0 x/7 + pi/3 = asin(0) + 2*pi*n, или x/7 + pi/3 = 2*pi*n перенесём pi/3 в правую часть ур-ния с противоположным знаком, итого: x/7 = -pi/3 + 2*pi*n разделим обе части полученного ур-ния на 1/7 получим ответ: x = 7*(-pi/3 + 2*pi*n) cos(x/3+п/6)=0 x/3 + pi/6 = acos(0) + pi*n, или x/3 + pi/6 = pi/2 + pi*n, где n - любое целое число перенесём pi/6 в правую часть ур-ния с противоположным знаком, итого: x/3 = pi/3 + pi*n разделим обе части полученного ур-ния на 1/3 получим ответ: x = 3*(pi/3 + pi*n)
Припустимо, що а, в – розміри ділянки.
Формули для периметра та площі прямокутника: Р = 2(a + в), S = а ∙ в. З іншої сторони Р = 40 м
2(а + в) = 40, а + в = 20
Нехай а = х, тоді в = 20 – х.
За змістом задачі число х задовольняє нерівність
0 < х < 20, тобто належить інтервалу (0; 20) .
Складаємо функцію:
S(x) = x(20 – x)
Функція S(x) неперервна на всій числовій прямій, тому будемо шукати її
найбільше і найменше значення на відрізку [0;20] .
Знаходимо критичні точки:
S '(x) = 20 – 2x; 20 – 2x = 0, x = 10
10 Є [0;20]
S(10) = 100; S(0) = 0; S(20) = 0
Найбільшого значення на відрізку [0;20] функція S набуває, якщо х = 10. Якщо
вона досягає найбільшого значення всередині відрізка [0;20], то вона набуває найбільшого значення і всередині інтервала (0, 20). Значить а = 10, тоді в = 20 – 10 = 10.
Отже, прямокутна ділянка буде мати найбільшу площу, якщо її розміри 10х10.
Відповідь: а = 10, в = 10