Сумма трех последовательных членов арифметической прогрессии равна 42 а сумму их квадратов равна 638. найдите эти члены прогрессии. обозначим через а среднее из трех чисел,а через d разность прогрессии
Y(x)=x²+4, х₀=1, k=4 угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀) 1) найдем производную: y'(x)=(x²+4)'=2x k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1 2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е. y'(x₀)=k 2*x₀=4 x₀=2 чтобы найти ординату точки, подставим x₀ в функцию y(x): y₀=y(x₀)=2²+4=4+4=8 (2;4) - координаты точки, в которой угловой коэффициент касания равен k=4 3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀) x₀=1, y'(x₀)=2 - найдено выше под 1) y(x₀)=1²+4=5 подставляем найденные значения в общий вид: f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1
1) 5x² + 30x + 45 = 5*( x² + 6x + 9 ) = 5*( x + 3 )*( x + 3 )
2) 10x² - 90 = 10*( x² - 9 ) = 5*2*( x - 3 )*( x + 3 )
3) cокращаем числитель и знаменатель дроби на 5*( x + 3 )
4) получаем ( x + 3 ) / ( 2*( x - 3 )) = ( x + 3 ) / ( 2x - 6 )
ОТВЕТ ( x + 3 ) / ( 2x - 6 )
N 2
( x² + 25 )/( x² - 25 ) + ( 5 / ( 5 - x ) = ( x² + 25 - 5( x + 5 )) / ( x² - 25 ) =
= ( x² + 25 - 5x - 25 ) / ( x² - 25 ) = ( x² - 5x ) / ( x² - 25 ) = ( x*( x - 5 )) /
/ ( ( x - 5 )*( x + 5 )) = x / ( x + 5 )
ОТВЕТ x / ( x + 5 )
угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀)
1) найдем производную:
y'(x)=(x²+4)'=2x
k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1
2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е.
y'(x₀)=k
2*x₀=4
x₀=2
чтобы найти ординату точки, подставим x₀ в функцию y(x):
y₀=y(x₀)=2²+4=4+4=8
(2;4) - координаты точки, в которой угловой коэффициент касания равен k=4
3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀)
x₀=1, y'(x₀)=2 - найдено выше под 1)
y(x₀)=1²+4=5
подставляем найденные значения в общий вид:
f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1