Сумма утроенного второго и четвёртого членов арифметической прогрессии равна 20. Вычисли, при каком значении разности прогрессии произведение третьего и пятого членов прогрессии будет наименьшим.
ответ:
разность прогрессии: d=
В решении задания использовались формулы (запиши недостающие числа):
Представим, что выбранные монеты пожертвовали рубль на благотворительность, а потом решили отдать туда же половину своего номинала.
После первого процесса сумма уменьшилась на 11 и стала равна 14 рублям, а номиналы монет стали 0, 2 и 4 рубля, после второго - сумма стала в два раза меньше (7 рублей), а новые номиналы - 0, 1 и 2 рубля.
Итак, нужно найти все выдать 7 рублей 11 монетами по 0, 1 и 2 рубля. Понятно, что двухрублёвых монет должно быть не больше трёх - иначе сумма была бы больше 4 * 2 = 8 рублей, а на самом деле всего 7.
Перебираем варианты:
- нет двухрублевых монет. Надо выдать 7 рублей - это 7 монет по 1 рублю и 11 - 0 - 7 = 4 монеты по 0 рублей.
- одна двухрублевая монета. Осталось выдать 5 рублей - 5 монет по 1 рублю и 11 - 1 - 5 = 5 монет по 0 рублей.
- две монеты по 2 рубля. Осталось выдать 3 рубля - 3 монеты по 1 рублю, 11 - 2 - 3 = 6 монет по 0 рублей.
- три монеты по 2 рубля. Осталось выдать 1 рубль - 1 монета по 1 рублю, 11 - 3 - 1 = 7 монет по 0 рублей.
А теперь монеты одумались и забрали свои пожертвования обратно. Получились четыре заплатить 25 рублей:
- 0 по 5₽ + 7 по 3₽ + 4 по 1₽
- 1 по 5₽ + 5 по 3₽ + 5 по 1₽
- 2 по 5₽ + 3 по 3₽ + 6 по 1₽
- 3 по 5₽ + 1 по 3₽ + 7 по 1₽
= 9sin^2 a + 9cos^2 a + 2sin^2 a + 6sin^4 a + 2(sin^4 a + 2cos^4 a) = (*)
Заметим, что
1) 9sin^2 a + 9cos^2 a = 9(sin^2 a + cos^2 a) = 9
2) sin^4 a + cos^4 a = sin^4 a + 2sin^2 a*cos^2 a + cos^4 a - 2sin^2 a*cos^2 a =
= (sin^2 a + cos^2 a)^2 - 2sin^2 a*cos^2 a = 1 - 1/2*(4sin^2 a*cos^2 a)
Подставляем
(*) = 9 + 2sin^2 a + 6sin^4 a + 2 - 4sin^2 a*cos^2 a =
= 11 + 4sin^2 a - 2sin^2 a + 6sin^4 a - 4sin^2 a*cos^2 a =
= 11 - 2sin^2 a + 6sin^4 a + 4sin^2 a*(1 - cos^2 a) =
= 11 - 2sin^2 a + 6sin^4 a + 4sin^4 a = 11 - 2sin^2 a + 10sin^4 a =
= 10(sin^4 a - 2*1/10*sin^2 a + 1/100) - 1/10 + 11 =
= 10(sin^2 a - 1/10)^2 + 109/10
Минимальное значение квадрата равно 0, а всего выражения 109/10.