Суммативное оценивание за раздел
«Неравенства»
Тема Квадратное неравенство
Рациональное неравенство
Решение систем неравенств
Цель обучения 8.2.2.8 решать квадратные неравенства
8.2.2.9 решать рациональные неравенства
8.2.2.10 решать системы из двух неравенств, одно из которых линейное, а второе-квадратное
Критерий оценивания Обучающийся
Решает квадратные неравенства
Решает рациональные неравенства
решает системы из двух неравенств, одно из которых линейное, а второе-квадратное
Время выполнения 25 минут
ЗАДАНИЯ
.Для каждого неравенства укажите множество его решений.
А) 9– х2 > 0. Б) 9+ x2 > 0. В) 9– x2 < 0. Г) 9+ х2 < 0
1) ( - ∞; -3) ∪( 3; + ∞). 2) ( - ∞ ; + ∞ ). 3) ( -3; 3 ). 4) ( 3; + ∞ ) 5) ∅ 6) ( - ∞; -3)
ответ А Б В Г
[4]
2. Решите неравенство: . (9-х)(6х+1)(х-7) ≥ 0
[5]
3. 3. Решите систему неравенств:
х2+7х+6˃0,
2х-6≤0.
[5]
Схема выставления
Критерий оценивания № задания Дескриптор
Обучающийся
Решает квадратные неравенства 1 Определяет соответствующий вывод для неравенства, решением которого является вся числовая прямая 1
Определяет соответствующий вывод для неравенства, которое не имеет решений 1
Определяет соответствующий вывод для неравенства, решением которого является промежуток 1
Определяет соответствующий вывод для неравенства, решением которого является объединение двух промежутков 1
Решает рациональные неравенства 2 Представляет каждый двучлен в виде (х-х1) 1
Делит неравенство на -1 1
Отмечает нули на координатной прямой 1
Определяет знаки произведения в каждом промежутке 1
Записывает ответ 1
Решает системы из двух неравенств, одно из которых линейное, а второе-квадратное 3 Определяет метод решения первого неравенства 1
Решает первое неравенство 1
Решает второе неравенство 1
Изображает решения на числовой оси 1
Записывает ответ 1
Всего уменя есть 10, мир
1)
(y-3)(y-3) = (y-1)²,
у² - 9 = у² - 2у + 1,
у² - 9 - у² + 2у - 1 = 0,
2у - 10 = 0,
2у = 10,
у = 5,
2)
27x²*(1 - x) = (1 - x)³,
27х² - 27х³ = 1 - 3х + 3х² - х³,
27х² - 27х³ - 1 + 3х - 3х² + х³ = 0,
27х²*(1 - х) + 3х*(1 - х) + (х³ - 1) = 0,
(1 - х)(27х² + 3х) + (х - 1)(х² + х + 1) = 0,
(1 - х)(27х² + 3х) - (1 - х)(х² + х + 1) = 0,
(1 - х)(27х² + 3х - х² - х - 1) = 0,
(1 - х)(26х² + 2х - 1) = 0,
1 - х = 0, 26х² + 2х - 1 = 0,
х1 = 1, Д = 2² - 4*26*(-1) = 4 + 104 = 108,
х2 = (-2 + √108) / 2*26 = (-2 + 6√3) / 2*26 = -(1 - 3√3)/26,
х3 = (-2 - √108) / 2*26 = (-2 - 6√3) / 2*26 = -(1 + 3√3)/26
Цена по акции - 200 рублей
При покупке 2-х футболок - скидка 80% за вторую
Найти:
Покупка двух футболок - ? рублей
Решение
1) Цена футболки составляет 100% и равна 200 рублей. Скидка на вторую футболку 80%, значит её стоимость составит: 100%-80%=20%.
Найдём с пропорции стоимость футболки со скидкой в рублях:
200 рублей - 100%
цена со скидкой - 20%
200×20%÷100 %=200×0,2=40 рублей
2) За первую футболку покупатель заплатит 200 рублей, а за вторую со скидкой 40 рублей. Общая стоимость покупки:
200+40=240 (рублей)
ОТВЕТ: за покупку двух футболок придётся заплатить 240 рублей.