В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
MeBloger
MeBloger
09.09.2020 00:00 •  Алгебра

Свойства линейной функции; объясните как мы решили эти неравенства и как пришли к этому выводу


Свойства линейной функции; объясните как мы решили эти неравенства и как пришли к этому выводу

Показать ответ
Ответ:
lnstagramDeviza
lnstagramDeviza
09.05.2020 21:33

Имеется в виду, что a, b, c - какие-то функции от x. Обычный сводящийся к рассмотрению нескольких случаев раскрытия модулей, хорош, если легко ищутся промежутки, на которых эти функции имеют определенный знак. Если же это не так, можно применить метод, который можно найти в книжке Голубева "Решение сложных и нестандартных задач по математике" (этот метод там не обосновывается, поскольку любой, берущийся за решение сложных и нестандартных задач, должен такое обоснование придумывать самостоятельно). Постараюсь это обоснование привести здесь. Основой метода служат следующие равносильности:

|a|     |a|b\Leftrightarrow \left [ {{ab} \atop {ab} \atop {-ab}} \right..

Доказывать здесь их не хотелось бы. Скажем, в книжке Мерзляка, Полонского и Якира  "Алгебраический тренажер" они используются без доказательства.  Если эти доказательства кому-то нужны, помещайте такое задание, и я обязательно их приведу. Кстати, для тех, кто забыл, напомню, что фигурной скобкой обозначается система, а квадратной - совокупность.

Переходим к неравенству |a|+|b| Перенеся |b| направо, получаем неравенство первого типа, поэтому оно равносильно системе

\left \{ {{a Снова применяем тот же метод, теперь к каждому из неравенств системы, после чего получаем после перенесения  a влево, систему из четырех неравенств, которую для экономии места и времени для написания я изображу в виде \{\pm a\pm b

Рассуждая аналогично, получаем, что

|a|+|b|c\Leftrightarrow [\pm a\pm bc. Естественно, здесь такое обозначение я использовал для совокупности четырех неравенств,  полученных всевозможными раскрытия модулей.

Наконец, если мы имеем модуль и в правой части, то в случае неравенства |a|+|b|<|c| мы получаем систему \{\pm a\pm b\pm a \pm b, причем каждое из этих неравенств равносильно совокупности двух уравнений, полученных разными раскрытиями модуля  c.

Аналогично решается неравенство |a|+|b|>|c|, только здесь получится не система четырех совокупностей, а совокупность четырех систем.

0,0(0 оценок)
Ответ:
missvictoriak
missvictoriak
05.05.2020 08:45

x^2+y^2=29 умножим на 4

получим 4x^2+4y^2=116 =>

   y^2-4x^2=9

+                              

  4x^2+4y^2=116

y^2+4y^2+4x^2-4x^2=9+116

сократим  ( 4x^2 - 4x^2 ) => y^2+4y^2=125

                                               5 y^2=125 поделим на пять

                                                y^2= 25

                                                y=+- 5

если y= -5, то (-5)^2 - 4x^2 = 9

                        25 - 4x^2=9

                        -4x^2 = 9-25

                        -4x^2= - 16 умножим на минус один

                         4x^2=16 делим на четыре

                          x^2=4

                          x= +-2

если y= 5, то 5^2 - 4x^2 = 9

                      25 - 4x^2=9

                      -4x^2 = 9-25

                      -4x^2= - 16 умножим на минус один

                       4x^2=16 делим на четыре

                        x^2=4

                        x= +-2

ответ: 1) x=2, y=5

2) x= -2, y=5

3)x= -2, y= -5

4) x=2, x= -2, y= -5

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота