В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
незнакомка1232
незнакомка1232
22.04.2023 05:14 •  Алгебра

іть розв‘язати 2 і 3 завдання дуже потрібно будь ласка іть


іть розв‘язати 2 і 3 завдання дуже потрібно будь ласка іть

Показать ответ
Ответ:
Vafelka471
Vafelka471
21.12.2021 19:15
Вот первое
ответ: x=3 y=-13x-y=10x/3 + (x+1)/5=1                                                                       3x-y=10                                                                                                 3x=10+y                                            x/3+x+1/5=1                                                                           y=9/2-10(5x+3x+3-15)/15=0                                                               y=(9-20)/28x-12=0                                                                                   y=-11/2x=3/2                               а второе не могу , не получается вот пример по которому сам второе реши сложения в решении систем уравнений Системой линейных уравнений с двумя неизвестными - это два или несколько линейных уравнений, для которых необходимо найти все их общие решения. Мы будем рассматривать системы из двух линейных уравнений с двумя неизвестными. Общий вид системы из двух линейных уравнений с двумя неизвестными представлен на рисунке ниже:{ a1*x + b1*y = c1,
{ a2*x + b2*y = c2Здесь х и у неизвестные переменные, a1,a2,b1,b2,с1,с2 – некоторые вещественные числа. Решением системы двух линейных уравнений с двумя неизвестными называют пару чисел (x,y) такую, что если подставить эти числа в уравнения системы, то каждое из уравнений системы обращается в верное равенство. Существует несколько решения системы линейных уравнений. Рассмотрим один из решения системы линейных уравнений, а именно сложения. Алгоритм решения сложенияАлгоритм решения системы линейных уравнений с двумя неизвестными сложения.1. Если требуется, путем равносильных преобразований уравнять коэффициенты при одной из неизвестных переменных в обоих уравнениях.2. Складывая или вычитая полученные уравнения получить линейное уравнение с одним неизвестным3. Решить полученное уравнение с одним неизвестным и найти одну из переменных.4. Подставить полученное выражение в любое из двух уравнений системы и решить это уравнение, получив, таким образом, вторую переменную.5. Сделать проверку решения.Пример решения сложенияДля большей наглядности решим сложения следующую систему линейных уравнений с двумя неизвестными:{3*x + 2*y = 10;
{5*x + 3*y = 12;

Так как, одинаковых коэффициентов нет ни у одной из переменных, уравняем коэффициенты у переменной у. Для этого умножим первое уравнение на три, а второе уравнение на два.{3*x+2*y=10 |*3
{5*x + 3*y = 12 |*2Получим следующую систему уравнений:{9*x+6*y = 30;
{10*x+6*y=24;

Теперь из второго уравнения вычитаем первое. Приводим подобные слагаемые и решаем полученное линейное уравнение.10*x+6*y – (9*x+6*y) = 24-30; x=-6;Полученное значение подставляем в первое уравнение из нашей исходной системы и решаем получившееся уравнение.{3*(-6) + 2*y =10;
{2*y=28; y =14;Получилась пара чисел x=6 и y=14. Проводим проверку. Делаем подстановку.{3*x + 2*y = 10;
{5*x + 3*y = 12;

{3*(-6) + 2*(14) = 10;
{5*(-6) + 3*(14) = 12;

{10 = 10;
{12=12;

Как видите, получились два верных равенства, следовательно, мы нашли верное решение.ответ: (6, 14)
0,0(0 оценок)
Ответ:
miroslavakoval2
miroslavakoval2
22.08.2021 20:13
ДАНО
Y= \frac{3-x^2}{x+2}
НАЙТИ
1 - интервалы монотонности
2 - локальные экстремумы.
РЕШЕНИЕ
1)
Исследование на монотонность - точки разрыва функции - деление на 0 надо исключить. .
х+2 ≠ 0 и х ≠ - 2 -  разрыв функции - есть.
D(x) -  X∈(-∞;-2)∪(-2;+∞)
2) 
Поиск экстремумов - в корнях первой производной.
Y'(x)= \frac{-2x}{x+2}- \frac{3-x^2}{(x+2)^2}
Корни производной: х1 = - 3 и х2 = -1 (без решения).
Максимум - Y(-3) = 6,  минимум - Y(-1) = 2.
Интервалы монотонности.
Убывает - Х∈(-∞;-3)∪(-1;+∞)
 Возрастает - X∈(-3;-2)∪(-2;-1)
Точка перегиба функции - в точке разрыва - при Х= -2 - без анализа второй производной.
График функции на рисунке в приложении.
Исследуйте функцию y=(3-x^2)/(x+2)на монотонность и экстремумы
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота