Неполные квадратные уравнения, к которых коэффициент c=0, то есть уравнение имеет вид ax²+bx=0.
Такие уравнения решаются разложением левой части уравнения на множители.
\[a{x^2} + bx = 0\]
Общий множитель x выносим за скобки:
\[x \cdot (ax + b) = 0\]
Это уравнение — типа «произведение равно нулю«. Произведение равно нулю, если хотя бы один из множителей равен нулю. Приравниваем к нулю каждый из множителей:
\[x = 0;ax + b = 0\]
Второе уравнение — линейное. Решаем его:
\[ax = - b\_\_\_\left| {:a} \right.\]
\[x = - \frac{b}{a}\]
Таким образом, неполное квадратное уравнение вида ax²+bx=0 имеет 2 корня,один из которых равен нулю, а второй — -b/a.
Так как координаты трёх вершин имеют специальный, а не общий вид, можно, не мудрствуя лукаво, СРАЗУ написать ответ D(4,-3).
Немного поясню свой ответ. Сразу видно, что прямоугольник расположен так, что его стороны параллельны осям координат. Это потому, что А и В имеют одинаковые абсциссы, а В и С одинаковые ординаты, поэтому по соображениям симметрии А и D должны иметь одинаковые ординаты, а C и D одинаковые абсциссы, откуда следуют координаты D. Если бы прямоугольник был как-то повёрнут и сдвинут относительно осей координат, то координаты четвёртой точки тоже можно было найти, но не так просто, а путём определённых вычислений и знания свойств прямоугольника.
Да, там ещё площадь. Понятно, что стороны равны 5 и 9, значит площадь равна 45.
Неполные квадратные уравнения, к которых коэффициент c=0, то есть уравнение имеет вид ax²+bx=0.
Такие уравнения решаются разложением левой части уравнения на множители.
\[a{x^2} + bx = 0\]
Общий множитель x выносим за скобки:
\[x \cdot (ax + b) = 0\]
Это уравнение — типа «произведение равно нулю«. Произведение равно нулю, если хотя бы один из множителей равен нулю. Приравниваем к нулю каждый из множителей:
\[x = 0;ax + b = 0\]
Второе уравнение — линейное. Решаем его:
\[ax = - b\_\_\_\left| {:a} \right.\]
\[x = - \frac{b}{a}\]
Таким образом, неполное квадратное уравнение вида ax²+bx=0 имеет 2 корня,один из которых равен нулю, а второй — -b/a.
Примеры.
\[1){x^2} + 18x = 0\]
Общий множитель x выносим за скобки:
\[x \cdot (x + 18) = 0\]
ДОЛЖНО БЫТЬ ПРАВИЛЬНО
Немного поясню свой ответ. Сразу видно, что прямоугольник расположен так, что его стороны параллельны осям координат. Это потому, что А и В имеют одинаковые абсциссы, а В и С одинаковые ординаты, поэтому по соображениям симметрии А и D должны иметь одинаковые ординаты, а C и D одинаковые абсциссы, откуда следуют координаты D.
Если бы прямоугольник был как-то повёрнут и сдвинут относительно осей координат, то координаты четвёртой точки тоже можно было найти, но не так просто, а путём определённых вычислений и знания свойств прямоугольника.
Да, там ещё площадь. Понятно, что стороны равны 5 и 9, значит площадь равна 45.