Тема: Квадратный трехчлен. Решение уравнений, приводимых к квадратным.
Решение задач с рациональных уравнений
1. Разложите на множители квадратный трехчлен:
1) x^2 − 4x − 32
2. Решите уравнение:
1) x^4 − 8x^2 − 9 = 0
2)x^2-7x 18
=
x+2 x+2
3. Решите уравнение:
x−1 + х+1 + 2х+8
= 0
х+2а х-2 4-x^2
4. Сократите дробь: 4a2+a−3
a^2−1
5. Стояние между двумя пристанями равное 72км, моторная лодка
проходит по течению реки на 2 ч быстрее, чем против течения.
Найдите скорость течения, если собственная скорость лодки равна 15
км/ч.
6. Постройте график функции: y =x^2+2x−15
x−3
общее уравнение прямой выглядит у=кх+в
к - угловой коэффициент прямой — коэффициент в уравнении прямой на координатной плоскости, он численно равен тангенсу угла (составляющего наименьший поворот от оси Ox к оси Оу) между положительным направлением оси абсцисс и данной прямой линией.в данном случае прямая параллельна оси Ох, то есть угол ее наклона к оси Ох = 0,так как tg 0=0, то к=0 и уравнение будет выглядеть так:у=0х+в, или у=впостоянную "в" находим, подставляя в данное уравнение координаты известной точкипрямой х=-2 y=-3
-3= 0*(-2)+b
b=-3
Значит, окончательно, уравнение прямой проходящей через точку ( -2 ; -3)
параллельно оси Ох будет выглядеть так:
у=-3
Пример 1. В урне 10 белых и 8 черных шаров. Наудачу отобраны 5 шаров. Найти вероятность того, что среди них окажется ровно 2 белых шара.
Подставляем в формулу (1) значения: K=10K=10, N−K=8N−K=8, итого N=10+8=18N=10+8=18, выбираем n=5n=5 шаров, из них должно быть k=2k=2 белых и соответственно, n−k=5−2=3n−k=5−2=3 черных. Получаем:
P=C210⋅C38C518=45⋅568568=517=0.294.P=C102⋅C83C185=45⋅568568=517=0.294.
Пример 2. В урне 5 белых и 5 красных шаров. Какова вероятность вытащить наудачу оба белых шара?
Здесь шары не черные и белые, а красные и белые. Но это совсем не влияет на ход решения и ответ.
Подставляем в формулу (1) значения: K=5K=5 (белых шаров), N−K=5N−K=5 (красных шаров), итого N=5+5=10N=5+5=10 (всего шаров в урне), выбираем n=2n=2 шара, из них должно быть k=2k=2 белых и соответственно, n−k=2−2=0n−k=2−2=0 красных. Получаем:
P=C25⋅C05C210=10⋅145=29=0.222.P=C52⋅C50C102=10⋅145=29=0.222.
Пример 3. В корзине лежат 4 белых и 2 черных шара. Из корзины достали 2 шара. Какова вероятность, что они одного цвета?
Здесь задача немного усложняется, и решим мы ее по шагам. Введем искомое событие
A=A= (Выбранные шары одного цвета) = (Выбрано или 2 белых, или 2 черных шара).
Представим это событие как сумму двух несовместных событий: A=A1+A2A=A1+A2, где
A1=A1= (Выбраны 2 белых шара),