1) Ни 2, ни 3 не могут стоять на конце числа, являющегося квадратом. Один 0 тоже не может там быть. Остается один вариант- число оканчивается на 5 На первом месте либо 2, либо 3 2035 или 3025 Проверкой убеждаемся, что 55²=3025
2) если б) - верно, то а) А+51 оканчивается на 2 нет квадрата такого числа, которое оканчивается на 2 и тогда в) А-38 есть точный квадрат тоже неверно, потому как оканчивается на 3, а квадрата числа, оканчивающегося на три тоже нет ответ б) неверно, значит а) и в) верные
3) Нет. Так как 10·10=100 и 4·1=4 100:4=25 - нечетное число плиток в квадрате не может уместиться
фнизу
Объяснение:
Выделяем множитель
2
из
4
cos
2
(
x
)
−
2
−
2
cos
(
x
)
.
Нажмите, чтобы увидеть больше шагов...
2
(
2
cos
2
(
x
)
−
1
−
cos
(
x
)
)
=
0
Разлагаем на множители.
Нажмите, чтобы увидеть больше шагов...
2
(
cos
(
x
)
−
1
)
(
2
cos
(
x
)
+
1
)
=
0
Разделим каждый член в выражении
2
(
cos
(
x
)
−
1
)
(
2
cos
(
x
)
+
1
)
=
0
на
2
.
2
(
cos
(
x
)
−
1
)
(
2
cos
(
x
)
+
1
)
2
=
0
2
Сократить общий множитель
2
.
Нажмите, чтобы увидеть больше шагов...
(
cos
(
x
)
−
1
)
(
2
cos
(
x
)
+
1
)
=
0
2
Делим
0
на
2
.
(
cos
(
x
)
−
1
)
(
2
cos
(
x
)
+
1
)
=
0
Если любой отдельный множитель в левой части уравнения равен
0
, то и все выражение будет равняться
0
.
cos
(
x
)
−
1
=
0
2
cos
(
x
)
+
1
=
0
Приравняем первый множитель к
0
и решим.
Нажмите, чтобы увидеть больше шагов...
x
=
2
π
n
,
2
π
+
2
π
n
для всех целых
n
Приравняем следующий множитель к
0
и решим.
Нажмите, чтобы увидеть больше шагов...
x
=
2
π
3
+
2
π
n
,
4
π
3
+
2
π
n
для всех целых
n
Итоговым решением являются все значения, обращающие
2
(
cos
(
x
)
−
1
)
(
2
cos
(
x
)
+
1
)
2
=
0
2
в верное тождество.
x
=
2
π
n
,
2
π
+
2
π
n
,
2
π
3
+
2
π
n
,
4
π
3
+
2
π
n
для всех целых
n
Объединяем ответы.
x
=
2
π
n
3
для всех целых
n
Один 0 тоже не может там быть.
Остается один вариант- число оканчивается на 5
На первом месте либо 2, либо 3
2035 или 3025
Проверкой убеждаемся, что 55²=3025
2)
если б) - верно, то а) А+51 оканчивается на 2
нет квадрата такого числа, которое оканчивается на 2 и тогда
в) А-38 есть точный квадрат тоже неверно, потому как оканчивается на 3, а квадрата числа, оканчивающегося на три тоже нет
ответ б) неверно, значит а) и в) верные
3) Нет. Так как 10·10=100 и 4·1=4
100:4=25 - нечетное число плиток в квадрате не может уместиться