В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Dezzy12
Dezzy12
27.08.2020 21:45 •  Алгебра

Теорема. отношение изоморфизма между частично множествами является отношением эквивалентности. нужно доказать. во всех книгах указанно, что это очевидно, но для меня не

Показать ответ
Ответ:
nyragka
nyragka
05.07.2020 13:27
Хоть бы определение привели (бог с ним, что вопрос в категории "алгебра 5-9"). Изоморфизм тут означает биективное отображение, сохраняющее порядок? Если так, то отношение изоморфизма:
1) рефлексивно:  в качестве изоморфизма можно взять тождественное отображение
2) симметрично: если есть биекция A -> B, то обратное отображение B -> A (оно существует, т.к. прямое - биекция) будет сохранять порядок:
3) транзитивно: если есть биекция f: A -> B, биекция g: B -> C (обе сохраняют порядок), то gf: A -> C - биекция и сохраняет порядок.

Пародии на доказательства:
2) для всех x, y из A x <= y <-> f(x) <= f(y), тогда для всех u, v из B u <= v <-> f-1(u)<=f-1(v)
(От противного: пусть не так. Обозначим f-1(u)=x и f-1(v)=y и получим противоречие с первым неравенством).
3) для всех x, y из A x <= y <-> f(x) <= f(y), для всех u, v из B u <= v <-> g(u)<=g(v)
x <= y <-> f(x) <= f(y) <-> gf(x) <= gf(y)
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота