ТЕСТ «Системы линейных уравнений» 7класс
Вариант1.
А1. Даны уравнения с двумя переменными. Линейным является
1) 5x2+3y=7 2) x+y=10 3) 4) 7xy+x=5
А2. Решением уравнения x – 2y= -4 является пара чисел
1) (2;0) 2) (0; -4) 3) (-4;0) 4) (1;-2)
А3. График уравнения х+2=0 изображен на рисунке
А4 Решением системы уравнений является пара чисел
1) ( 2) ( 3) 4)
А5. Система двух линейных уравнений с двумя неизвестными может иметь
1) Одно решение 2) Два решения 3) Три решения 4) Четыре решения
А6. Геометрическая иллюстрация решения системы, не имеющей решения, изображена на рисунке
1) 2) 3) 4)
А7. На рисунке изображено графическое решение системы
1) 2)
3) 4)
А8. Графики линейных уравнений х + у = -5 и 2х – у = -4 пересекаются в точке, расположенной в координатной четверти
1) I 2) II 3) III 4) IV
А9. Сумма двух чисел равна 48. Первое число больше второго в 2 раза. Найдите эти числа. Если х – первое число, а у – второе, тогда по условию задачи получим систему
1) 2) 3) 4)
чтобы найти наибольшее и наименьшее значение, мы должны найти точки экстремума, т.е. точки максимума и минимума функции. Для этого найдем производную
теперь найдем точки в которых производная равна 0
теперь посмотрим что это за точки
__+_______-_________+_______
-1 3
Значит (-оо;-1) функция возрастает, (-1;3) убывает; (3;+оо) возрастает
точка х=-1 точка максимума, х=3 точка минимума
обе точки входят в промежуток [-2;4]
Наибольшее значение
наименьшее значение
можно конечно проверить значение функции на концах отрезка (но это лишнее, т,к, точки максимума и минимума лежат на этом отрезке)
мы убедились что наибольшее значение в точке х=-1; f(-1)=15
наименьшее значение в точке х=3; f(3)= -17
Ну, первым делом было бы неплохо вычислить длины векторов a=3m+2n и b=-m+3n. Это можно сделать примерно так:
|a|^2 = <a,a> = <3m+2n,3m+2n> =
<3m, 3m> + 2<2n, 3m> + <2n, 2n> =
9|m|^2 + 12<m, n> + 4|n|^2
|b|^2 = <b,b> = <-m+3n,-m+3n> =
<-m, -m> - 2<m,3n> + <3n, 3n> =
|m|^2 - 6<m, n> + 9|n|^2
Угол между a и b будет вычисляться примерно так:
cos(ab) = <a,b> / (|a| * |b|)
Скалярное произведение имеет вид:
<a,b> = <3m+2n,-m+3n> =
<3m,-m> + <2n,-m> + <3m,3n> + <2n,3n> =
-3|m|^2 - 2 <n,m> + 9<m,n> + 4|n|^2 =
-3|m|^2 + 7 <n,m> + 4|n|^2
Получили выражение косинуса через известные величины. До числа, думаю, доведёте сами. 8-)