При x≤-1 - функция положительная При -1≤x≤4 - функция отрицательная При x≥4 - функция положительная выбираем те интервалы, где функция положительная (неотрицательная) - это x≤-1 и x≥4 ответ: x∈(-бесконечность; -1]U[4; +бесконечность)
2)
При x≤-6 - функция положительная При -6≤x<10 - функция отрицательная При x>10 - функция положительная выбираем те интервалы, где функция положительная (неотрицательная): x∈(-бесконечность; -6]U(10; +бесконечность)
3) подкоренное выражение должно быть неотрицательным:
если даже разложить квадрат разности по формуле сокращенного умножения:
(4х-4у)² = (16x²-2*4x*4y+16y²) = (16x²-32ху +16у²) = 16(х²-2ху +у²) =
= 16 (х-у)²
2) (5у+5)²= (5(y+1))²= 25 (у+1)²
или
(5у+5)²= (25у²+2*5*5у +25) = 25(у²+2у+1) = 25*(у+1)²
3) (8m-10n)³ = (2*4m -2*5n)³= 8(4m-5n)³
4) (a²-9a)² = (a (a-9))²= a² (a-9)²
5) (6x-9y)³= (3 (2x-3y))³= 27 (2x-3y)³
6)(22x⁴-28x⁴-28x²y³) ⁵ = (-6x⁴-28x²y³) ⁵=
= (2x² (-3x²-14y³))⁵=
= 2⁵x⁵*² (-3x²-14y³)⁵ = 32x¹⁰ (-3x²-14y³)⁵
или
= (-2х² (3х² +14у³))⁵ = -32х¹⁰ (3х²+14у³)⁵
При x≤-1 - функция положительная
При -1≤x≤4 - функция отрицательная
При x≥4 - функция положительная
выбираем те интервалы, где функция положительная (неотрицательная) - это x≤-1 и x≥4
ответ: x∈(-бесконечность; -1]U[4; +бесконечность)
2)
При x≤-6 - функция положительная
При -6≤x<10 - функция отрицательная
При x>10 - функция положительная
выбираем те интервалы, где функция положительная (неотрицательная):
x∈(-бесконечность; -6]U(10; +бесконечность)
3) подкоренное выражение должно быть неотрицательным:
-1≤x≤4/3