В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
kostromitind
kostromitind
05.10.2020 16:15 •  Алгебра

\left \{ {{x^2-3y^2=22 } \atop {x^2+y^2-xy-y=6}} \right.

Показать ответ
Ответ:
16120000
16120000
11.06.2020 20:53

Преобразуем 2 уравнение:

(x+y)^2-(x+y)=0

(x+y)(x+y-1)=0 - произведение равно 0, если хотя бы один множитель равен 0

в 1 уравнении делаем замену:

xy=t

получим:

t^2+2t=3

t^2+2t-3=0

D=4+12=16=4^2

t1=(-2+4)/2=1

t2=(-2-4)/2=-3

система разделится на 4 системы

1) xy=1

x+y=0

x=-y

-y^2=1

y^2=-1

y - нет решений

2) xy=1

x+y-1=0

x=1-y

(1-y)y=1

-y^2+y-1=0

y^2-y+1=0

D<0

y - нет корней

3) xy=-3

x+y=0

x=-y

-y^2=-3

y^2=3

y1=sqrt(3)

y2=-sqrt(3)

x1=-sqrt(3)

x2=sqrt(3)

4) xy=-3

x+y-1=0

x=1-y

(1-y)*y=-3

-y^2+y=-3

-y^2+y+3=0

y^2-y-3=0

D=1+12=13

y3=(1+sqrt(13))/2

y4=(1-sqrt(13))/2

x3=1-(1+sqrt(13))/2=(2-1-sqrt(13))/2=(1-sqrt(13))/2

x4=1-(1-sqrt(13))/2=(2-1+sqrt(13))/2=(1+sqrt(13))/2

ответ: (-sqrt(3);sqrt(3)), (sqrt(3);-sqrt(3)), ((1-sqrt(13))/2;(1+sqrt(13))/2), ((1+sqrt(13))/2;(1-sqrt(13))/2)

Объяснение:

вродебы так

0,0(0 оценок)
Ответ:
Акинаййй
Акинаййй
21.03.2022 03:18

Предположим, что существует какое-либо дробное число, при возведении которого в квадрат можно получить два: (p/q)^2 = 2. При этом эта дробь несократима.

Запишем уравнение так: p^2 / q^2 = 2.

Умножим обе части уравнений на q^2, получим: p^2= 2q^2.

Выражение 2q^2 в любом случае должно быть четным, т. к. выполняется умножение на 2.

Значит, p^2 тоже четно.

Но известно, что квадрат нечетного числа дает нечетное число (например, 5^2 = 25), а квадрат четного – четное (4^2 = 16). Поэтому p должно иметь четное значение.

Если p четно, то его можно представить как p = 2^k. Тогда получим: (2k)^2 = 2q^2. Или 4k^2 = 2q^2.

Сократим полученное уравнение и получим: 2k^2 = q2.

Поскольку в левой части уравнения результат будет четным (т. к. происходит умножение на 2), то и q должно быть четным, чтобы его квадрат был четным.


Но вспомним,

ранее было доказано, что и p четно,изначально предполагалось, что взятая дробь p/q несократима.

Если же и p, и q четные числа, то образованную ими дробь можно сократить на 2. Т. е. приходят к противоречию с условием и на этом основании делают вывод, что нет рациональной дроби, квадрат которой может быть равен 2.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота