Треугольник авс вписан в окружность с центром в точке о.найдите градусную меру угла с треугольника абс если угол аов равен 32 градусам(нужно полное решение)
В каждом часе 6 промежутков по 10 мин, вероятность того, что А прийдёт в определенный промежуток времени 1/6, так и для другого, но к примеру А на первые 10 мин, и второй на первые 10 мин=1/6*1/6; так же на вторые 10 мин вероятность встречи 1/6*1/6 и так для третьего, четвортого, пятого и шестого десятка минут соответственно( мы не считаем, что один приходит, когда другой уходит) прпросуммируем результат
то-есть 1/6 сдесь задача аналогична тому, с кокой вероятностью выпадет на двух игральных костях две одинаковых цифры к примеру для шестёрок 1/36, для пятёрок 1/36,и т.д., всего 6, просуммировав, получим 1/6
но к примеру А на первые 10 мин, и второй на первые 10 мин=1/6*1/6;
так же на вторые 10 мин вероятность встречи 1/6*1/6 и так для третьего, четвортого, пятого и шестого десятка минут соответственно( мы не считаем, что один приходит, когда другой уходит)
прпросуммируем результат
то-есть 1/6
сдесь задача аналогична тому, с кокой вероятностью выпадет на двух игральных костях две одинаковых цифры
к примеру для шестёрок 1/36, для пятёрок 1/36,и т.д., всего 6, просуммировав, получим 1/6
cos(π/2-3x)= cos (3x-π/2)
Решаем уравнение:
cos ( 3x-π/2) = √3/2
3x - π/2 = ± arccos (√3/2) + 2π·n, n∈ Z
3x - π/2 = ± (π/6) + 2π·n, n∈ Z
3x = π/2 ± (π/6) + 2π·n, n∈ Z
x = π/6 ± (π/12) + (2π/3)·n, n∈ Z
или
вычитая получим: складывая получим:
х₁= π/2 - (π/6) + (2π/3)·n, n∈ Z х₂= π/2 + (π/6) + (2π/3)·n, n∈ Z
х₁= π/3 + (2π/3)·n, n∈ Z х₂=2π/3 + (2π/3)·n, n∈ Z
при n =0 получаем корни
π/3 и 2π/3
при n = 1
(π/3) + (2π\3) = π и (2π/3) + (2π/3)= 4π/3
при n = 2
(π/3) + (2π/3)·2=(5π\3) и ( 2π/3) +(2π/3)·2=(6π\3)=2π
3π/2 <(5π/3) <2π
3π/2 < 2π≤2π
ответ. На [3π/2; 2π] два корня: (5π.3) и 2π