Три числа, добуток яких дорівнює 64, а сума кубів — 584, утворюють геометричну прогресію. Знайдіть знаменник цієї прогресії, якщо він більший від одиниці.
Oy: x = 0 ⇒ y = -9. Значит (0;-9) - точка пересечения с осью Oy.
5. Промежутки монотонности и точки экстремума:
y=-x^4+8x^2-9.
y'=0 ⇒-4x³+16x = 0 ⇒ -4x(x²-4) = 0.
Имеем 3 критические точки: х = 0, х = 2 и х = -2.
Определяем знаки производной вблизи критических точек.
x = -3 -2 -1 0 1 2 3 y' = 60 0 -12 0 12 0 -60.
Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума. Минимум функции в точке: x = 0. Максимумы функции в точках: x = -2. x = 2. Убывает на промежутках (-2, 0] U [2, +oo).
Возрастает на промежутках (-oo, -2] U [0, 2).
6. Вычисление второй производной: y''=-12х² + 16 ,
Найдем точки перегибов, для этого надо решить уравнение \frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0 (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции: \frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0 Вторая производная 4 \left(- 3 x^{2} + 4\right) = 0. Решаем это уравнение Корни этого уравнения x_{1} = - \frac{2 \sqrt{3}}{3}. x_{2} = \frac{2 \sqrt{3}}{3}. 7. Интервалы выпуклости и вогнутости: Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов: Вогнутая на промежутках [-2*sqrt(3)/3, 2*sqrt(3)/3]
Выпуклая на промежутках (-oo, -2*sqrt(3)/3] U [2*sqrt(3)/3, oo)
Исследовать функцию y=-x^4+8x^2-9 и построить ее график.
1. Область определения функции - вся числовая ось.
2. Функция y=-x^4+8x^2-9 непрерывна на всей области определения. Точек разрыва нет.
3. Четность, нечетность, периодичность:
Так как переменная имеет чётные показатели степени, то функция чётная, непериодическая.
4. Точки пересечения с осями координат:
Ox: y=0, -x^4+8x^2-9=0, заменим x^2 = n.
Квадратное уравнение, решаем относительно n:
Ищем дискриминант:
D=8^2-4*(-1)*(-9)=64-4*(-1)*(-9)=64-(-4)*(-9)=64-(-4*(-9))=64-(-(-4*9))=64-(-(-36))=64-36=28;
Дискриминант больше 0, уравнение имеет 2 корня:
n₁=(√28-8)/(2*(-1)) = (√28-8)/(-2) = -(2√7/2-8/2)= 4 -√7 ≈ 1,354249;
n₂ = (-√28-8)/(2*(-1)) = (-2√7-8)/(-2)= 4 + √7 ≈ 6,645751.
Обратная замена: х = √n.
x₁ = √1,354249 = 1,163722, x₂ = -1,163722.
x₃ = √6,645751 = 2,57793, x₄ = -2,577935.
Получаем 4 точки пересечения с осью Ох:
(1,163722; 0), (-1,16372; 0), (2,57793; 0), (-2,57793; 0).
x₃ = √6,645751 = 2,57793,
Oy: x = 0 ⇒ y = -9. Значит (0;-9) - точка пересечения с осью Oy.
5. Промежутки монотонности и точки экстремума:
y=-x^4+8x^2-9.
y'=0 ⇒-4x³+16x = 0 ⇒ -4x(x²-4) = 0.
Имеем 3 критические точки: х = 0, х = 2 и х = -2.
Определяем знаки производной вблизи критических точек.
x = -3 -2 -1 0 1 2 3y' = 60 0 -12 0 12 0 -60.
Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.
Минимум функции в точке: x = 0.
Максимумы функции в точках:
x = -2.
x = 2.
Убывает на промежутках (-2, 0] U [2, +oo).
Возрастает на промежутках (-oo, -2] U [0, 2).
6. Вычисление второй производной: y''=-12х² + 16 ,
Найдем точки перегибов, для этого надо решить уравнение
\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
Вторая производная 4 \left(- 3 x^{2} + 4\right) = 0.
Решаем это уравнение
Корни этого уравнения
x_{1} = - \frac{2 \sqrt{3}}{3}.
x_{2} = \frac{2 \sqrt{3}}{3}.
7. Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках [-2*sqrt(3)/3, 2*sqrt(3)/3]
Выпуклая на промежутках (-oo, -2*sqrt(3)/3] U [2*sqrt(3)/3, oo)
8. Искомый график функции в приложении.
3х-у=3, 2. 2х-3у=1, 3. 2х+у=1, 4. х+у=6,
3х-2у=0. 3х+у=7. 5х+2у=0. 5х-2у=9.
5. х+5у=7, 6. х+у=7, 7. 4х-3у=-1, 8. х+2у=-2,
3х+2у=-5. 5х-7у=11. х-5у =4. 3х-у=8.
9. 2х-5у=-7, 10. х-у=3, 11. 3х-5у=16, 12. 2х+3у=-7,
х-3у=-5. 3х+4у=2. 2х+у=2. х-у=4.
13. 2х+5у=-7, 14. х-3у=8, 15. 2х-3у=5, 16. х-4у=-1,
3х-у=15. 2х-у=6. х-6у=-2. 3х-у=8.
17. 5х-4у=12, 18. 6х+у=5, 19. 2х-3у=11, 20. х-6у=-2,
х-5у=-6. 2х-3у=-5. 5х+у=2. 2х+3у=11.
21. 3х-2у=16, 22. 2х+3у=3, 23. 4х-2у=-6, 24. 3х+2у=8,
4х+у=3. 5х+6у=9. 6х+у==11. 2х+6у=10.
25. 5х+у==14, 26. 3х-2у=5, 27. х+4у=7, 28. 2х-3у=5,
3х-2у=-2. 2х+5у=16. х-2у=-5. 3х+2у=14.
29. х-2у=7, 30. 4х-6у=26, 31. х+3у=7, 32. 8х+3у=-21,
х+2у=-1. 5х+3у=1. х+2у=5. 4х+5у=-7.
33. х-2у=8, 34. 8х+2у=11, 35. 2х-у=13, 36. 7х+3у=1,
х-3у=6. 6х-4у=11. 2х+3у=9. 2х-6у=-10.
37. 2х+3у=10, 38. 3х-2у=5, 39. 2х+у=-5, 40. 2х+3у=1,
х-2у=-9. 5х+4у=1. х-3у=-6. 6х-2у=14.