Тригонометрические выражения 6)sinx(cosx-1)-sin2x 8)найдите cos^2 a,если cos2a=1/3 10) выражение sin2asin3a-cos2acos3a+cos5a 13) найдите cos2a если cos a=-1/4 15)найдите cos2a, если sina=-1/7 16) выражение cos1/3x*cos2/3x-1/2cosx/3+sin2/3x*sinx/3
Х час - время половины пути от А до В поезда из В (х+1,5) час - время половины пути поезда из А 1 - весь путь 0,5 / х - скорость поезда из В 0,5/ (х+1,5) - скорость поезда из А 1 - 1/10=9/10 - пути проехали за 6 час оба поезда S=V:T (0,5/х +0,5 / (Х+1,5) * 6 = 9/10 3/Х + 3/(Х+1,5) = 9/10 30Х+45 + 30х=9х² + 13,5х 9х² - 46,5 - 45 =0 0,6 х² - 3,1х -3 =0 D = 9,61 + 7,2 =16,81 х = (3,1+4,1)/ 1,2 = 6 (час) - время половины пути поезда из В - 6*2=12 час - время в пути поезда из В 6+1,5 = 7,5 (час) - время половины пути поезда из А 7,5 * 2=15 час - время в пути поезда из А
Импликация раскрывается так: A → B = ~A V B (здесь ~A = НЕ А) Эквиваленция раскрывается так: A ↔ B = (~A /\ ~B) V (A /\ B) Подставляем: 1. (A /\ B) → (A V B) = ~(A /\ B) V (A V B) = ~A V ~B V A V B = 1 Формула тождественно истинна 2. (A V B) → (A /\ B) = ~(A V B) V (A /\ B) = (~A /\ ~B) V (A /\ B) = A ↔ B Формула является выполнимой 3. (A V (B ↔ A)) /\ (A → B) = (A V (~B /\ ~A) V (B /\ A)) /\ (~A V B) = Z По закону поглощения A V (B /\ A) = A, поэтому Z = (A V (~B /\ ~A)) /\ (~A V B) = (A V ~B) /\ (A V ~A) /\ (~A V B) = = (A V ~B) /\ 1 /\ (~A V B) = (A V ~B) /\ (~A V B) = = (A /\ ~A) V (~B /\ ~A) V (A /\ B) V (~B /\ B) = (~B /\ ~A) V (A /\ B) = A ↔ B Формула является выполнимой
(х+1,5) час - время половины пути поезда из А
1 - весь путь
0,5 / х - скорость поезда из В
0,5/ (х+1,5) - скорость поезда из А
1 - 1/10=9/10 - пути проехали за 6 час оба поезда
S=V:T
(0,5/х +0,5 / (Х+1,5) * 6 = 9/10
3/Х + 3/(Х+1,5) = 9/10
30Х+45 + 30х=9х² + 13,5х
9х² - 46,5 - 45 =0
0,6 х² - 3,1х -3 =0
D = 9,61 + 7,2 =16,81
х = (3,1+4,1)/ 1,2 = 6 (час) - время половины пути поезда из В -
6*2=12 час - время в пути поезда из В
6+1,5 = 7,5 (час) - время половины пути поезда из А
7,5 * 2=15 час - время в пути поезда из А
A → B = ~A V B (здесь ~A = НЕ А)
Эквиваленция раскрывается так:
A ↔ B = (~A /\ ~B) V (A /\ B)
Подставляем:
1. (A /\ B) → (A V B) = ~(A /\ B) V (A V B) = ~A V ~B V A V B = 1
Формула тождественно истинна
2. (A V B) → (A /\ B) = ~(A V B) V (A /\ B) = (~A /\ ~B) V (A /\ B) = A ↔ B
Формула является выполнимой
3. (A V (B ↔ A)) /\ (A → B) = (A V (~B /\ ~A) V (B /\ A)) /\ (~A V B) = Z
По закону поглощения A V (B /\ A) = A, поэтому
Z = (A V (~B /\ ~A)) /\ (~A V B) = (A V ~B) /\ (A V ~A) /\ (~A V B) =
= (A V ~B) /\ 1 /\ (~A V B) = (A V ~B) /\ (~A V B) =
= (A /\ ~A) V (~B /\ ~A) V (A /\ B) V (~B /\ B) = (~B /\ ~A) V (A /\ B) = A ↔ B
Формула является выполнимой