Для решения запишем формулу бинома Ньютона:
Если а - слагаемое, содержащее неизвестную в наибольшей степени, то для определения степени результата нужно рассмотреть выражение .
Если b - слагаемое, не содержащее неизвестную, то для определения свободного члена результата нужно рассмотреть выражение .
Рассмотрим многочлен , где:
Для определения степени и свободного члена произведения достаточно знать степень и свободный член каждого из множителей.
Для многочлена :
- степень определяется выражением , то есть степень равна 84
- свободный член равен
- степень определяется выражением , то есть степень равна 6
Наконец, для многочлена получим:
- степень определяется выражением , то есть степень равна 90
Сумма степени и свободного члена многочлена :
ответ: 98
2) -1 целая 1\7*(4\5+19\20)*(6 целых 5\6+4 целых 2\3) = -8/7*(16/20+19/20)*(41/6+14/3) = -8/7*35/20*(41/6+28/6) = -10/5*69/6 = -2*69/6 = -69/3 = -23
3) (6 целых 3\8-2целых 3\4)*(-4)+7\18*9 = (51/8-11/4)*(-4)+7/2 = (51/8-22/8)*(-4)+7/2 = 29/8*(-4)+7/2 = -29/2+7/2 = -22/2 = -11
4) 9 целых 1\6:(4 целых 1\3-8)+24*3\8 = 55/6:(13/3-24/3)+9 = 55/6:(-11/3)+9 = 55/6*(-3/11)+9 = -5/2+9 = 6,5
Для решения запишем формулу бинома Ньютона:
Если а - слагаемое, содержащее неизвестную в наибольшей степени, то для определения степени результата нужно рассмотреть выражение .
Если b - слагаемое, не содержащее неизвестную, то для определения свободного члена результата нужно рассмотреть выражение .
Рассмотрим многочлен , где:
Для определения степени и свободного члена произведения достаточно знать степень и свободный член каждого из множителей.
Для многочлена :
- степень определяется выражением , то есть степень равна 84
- свободный член равен
Для многочлена :
- степень определяется выражением , то есть степень равна 6
- свободный член равен
Наконец, для многочлена получим:
- степень определяется выражением , то есть степень равна 90
- свободный член равен
Сумма степени и свободного члена многочлена :
ответ: 98