Объяснение:㏒(2)X=y,получим неравенство отн-но у:
(5y²-100) /(y²-25)≥4
(5y²-100-4y²+100) /(y²-25)≥0; (перенесли 4 влево и прив. к общему зн.)
y² /(y²-25)≥0, y²≥0 при у∈R , ЗНАЧИТ у²-25>0, (y-5)(y+5)>0⇔y>5 или y<-5.
переходя к переменной х имеем: [㏒(2)X>5⇔X>2^5⇔X>32,
㏒(2)X< -5⇔0<X<1/32.
Объяснение:㏒(2)X=y,получим неравенство отн-но у:
(5y²-100) /(y²-25)≥4
(5y²-100-4y²+100) /(y²-25)≥0; (перенесли 4 влево и прив. к общему зн.)
y² /(y²-25)≥0, y²≥0 при у∈R , ЗНАЧИТ у²-25>0, (y-5)(y+5)>0⇔y>5 или y<-5.
переходя к переменной х имеем: [㏒(2)X>5⇔X>2^5⇔X>32,
㏒(2)X< -5⇔0<X<1/32.