Пусть х км/ч скорость второго авто, тогда (х+20) км/ч скорость первого. Замечаем, что 2 ч 24 мин = 2,4 ч , составляем уравнение по времени в пути двух авто:
420 / х - 420 / (х+20) = 2,4
Приводим к общему знаменателю х(х+20) и
отбрасываем его, записав, что х не=0 и х не=-20
420(х+20)-420х=2,4х(х+20)
420х+8400-420х = 2,4x^2+48х
2,4x^2+48x- 8400 =0
x^2+20x-3500=0
D= 400+4*3500=14400, 2 корня
х(1)=(-20+120)/2 = 50 (км/ч ) скорость второго авто
1. В вазе лежат 11 фруктов: 7 яблок и 4 груши. Сначала из вазы извлекли 1 грушу, т.е. это нам известно (вероятность 1). В вазе осталось 10 фруктов: 7 яблок и 3 груши. Вероятность того, что в этот раз будет взята груша равна:
2. В коробке лежат 10 деталей: 6 нормальных и 4 более лёгких. Значит, вероятность вытянуть из коробки лёгкую деталь равна (пусть это будет событие А):
На 6 деталей из 10 случайно сделали напыление. Тогда вероятность вытянуть деталь без напыления (пусть это будет событие В) равна:
Т.к. события А и В независимы, то вероятность их совместного появления равна произведению вероятностей:
3. В вазе 11 цветков: 5 гвоздик и 6 нарциссов. Надо найти вероятность того, что среди 3 случайно вынутых цветков будет по крайней мере 1 гводика (пусть это событие А). Заметим, что собтытие, когда среди трёх вытащенных цветов все нарциссы, является противоположным событию А. Обозначим его и найдём его вероятность. Вероятность, что первым вытянутым цветком будет нарцисс, равна 6/11. Вероятность, что и второй цветок окажется нарциссом, равна 5/10. И наконец, вероятность, что и третий цветок будет нарциссом, равна 4/9. Т.к. события незавичимы, то вероятности перемножаем:
Есть другой вариант вычисления данной вероятности. Надо вычислить, сколько всего есть вариантов вытащить 3 цветка из 11 (это число сочетаний по 3 из 11 - ). И вычислить число вариантов выбора 3 нарциссов из 6 (). А потом по классической формуле вероятности находится требуемая вероятность. Не всегда, но в данном случае такой путь боле громоздок.
Пусть х км/ч скорость второго авто, тогда (х+20) км/ч скорость первого. Замечаем, что 2 ч 24 мин = 2,4 ч , составляем уравнение по времени в пути двух авто:
420 / х - 420 / (х+20) = 2,4
Приводим к общему знаменателю х(х+20) и
отбрасываем его, записав, что х не=0 и х не=-20
420(х+20)-420х=2,4х(х+20)
420х+8400-420х = 2,4x^2+48х
2,4x^2+48x- 8400 =0
x^2+20x-3500=0
D= 400+4*3500=14400, 2 корня
х(1)=(-20+120)/2 = 50 (км/ч ) скорость второго авто
х(2)= (-20-120)/2= -70 не подходит под усл задачи
50+20=70 км/ч скорость первого авто
2. В коробке лежат 10 деталей: 6 нормальных и 4 более лёгких. Значит, вероятность вытянуть из коробки лёгкую деталь равна (пусть это будет событие А):
На 6 деталей из 10 случайно сделали напыление. Тогда вероятность вытянуть деталь без напыления (пусть это будет событие В) равна:
Т.к. события А и В независимы, то вероятность их совместного появления равна произведению вероятностей:
3. В вазе 11 цветков: 5 гвоздик и 6 нарциссов. Надо найти вероятность того, что среди 3 случайно вынутых цветков будет по крайней мере 1 гводика (пусть это событие А). Заметим, что собтытие, когда среди трёх вытащенных цветов все нарциссы, является противоположным событию А. Обозначим его и найдём его вероятность.
Вероятность, что первым вытянутым цветком будет нарцисс, равна 6/11. Вероятность, что и второй цветок окажется нарциссом, равна 5/10. И наконец, вероятность, что и третий цветок будет нарциссом, равна 4/9. Т.к. события незавичимы, то вероятности перемножаем:
Есть другой вариант вычисления данной вероятности. Надо вычислить, сколько всего есть вариантов вытащить 3 цветка из 11 (это число сочетаний по 3 из 11 - ). И вычислить число вариантов выбора 3 нарциссов из 6 (). А потом по классической формуле вероятности находится требуемая вероятность. Не всегда, но в данном случае такой путь боле громоздок.
Теперь остаётся найти нужную вероятность: