В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
nikusachev01
nikusachev01
16.08.2021 13:44 •  Алгебра

У ШУХЛЯДІ ЛЕЖАТЬ 5 БІЛИХ КУЛЬОК І 4 ЧОРНІ КУЛЬКИ.
а) ВИПАДКОВИМ ЧИНОМ ВИБИРАЮТЬ ОДНК КУЛЬКУ З ШУХЛЯДИ. СКІЛЬКОМА ЦЕ МОЖНА ЗРОБИТИ?
б) СКІЛЬКОМА МОЖНА ВИБРАТИ ПАРО КУЛЬОК: БІЛУ І ЧОРНУ

Показать ответ
Ответ:
лауракот
лауракот
12.03.2020 03:38
Формула нахождения координаты х вершины параболы x = - \frac{b}{2a}
а координату y будем находить методом подстановки x
а). так как b здесь равен нулю, то при делении нуля получаем 0
х верш = 0
у верш = 0
координата точки (0;0)
б). после подстановки в формулу и решения выражения получаем
х верш = 1,5
у верш = - 1,5
координата точки (1,5;-1,5)
в) то же самое, подставляем в формулу и получаем
х верш = -5
у верш = 5
координата точки (-5;5)
г). для удобства раскроем скобки, получим выражение: x^ - 2x +1
и по формуле:
х верш = 1
у верш = 0
координата точки (1;0)
д). опять раскроем скобки, получим 2(x^+6x+9) =  2x^ + 12x +18
х верш = -3
у верш = 0
координаты точки (-3;0)
е). x^ - 4x +3
х верш = 2
у верш = 1
координата точки (2;1)
0,0(0 оценок)
Ответ:
timursharipov2
timursharipov2
19.04.2023 19:45

Для решения запишем формулу бинома Ньютона:

(a+b)^n=a^n+C_n^1a^{n-1}b+C_n^2a^{n-2}b^2+...+b^n

Если а - слагаемое, содержащее неизвестную в наибольшей степени, то для определения степени результата нужно рассмотреть выражение a^n.

Если b - слагаемое, не содержащее неизвестную, то для определения свободного члена результата нужно рассмотреть выражение b^n.

Рассмотрим многочлен S(x)=P(x)\cdot Q(x), где:

P(x)=(3x^7+6x^4-1)^{12}

Q(x)=(5x^2+2)^3

Для определения степени и свободного члена произведения достаточно знать степень и свободный член каждого из множителей.

Для многочлена P(x)=(3x^7+6x^4-1)^{12}:

- степень определяется выражением (3x^7)^{12}=3^{12}\cdot x^{7\cdot12}=3^{12}\cdot x^{84}, то есть степень равна 84

- свободный член равен (-1)^{12}=1

Для многочлена Q(x)=(5x^2+2)^3:

- степень определяется выражением (5x^2)^3=5^3\cdot x^{2\cdot3}=125\cdot x^6, то есть степень равна 6

- свободный член равен 2^3=8

Наконец, для многочлена S(x)=P(x)\cdot Q(x) получим:

- степень определяется выражением x^{84}\cdot x^6=x^{84+6}=x^{90}, то есть степень равна 90

- свободный член равен 1\cdot8=8

Сумма степени и свободного члена многочлена S(x):

90+8=98

ответ: 98

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота