У сумці 42 яблука, серед яких 24 червоних і 18 жовтих. З сумки навмання виймають одне яблуко. Визначити ймовірність того що ця яблуко: а) жовте, б) червоне, в) зелене.
Дробь равна нулю, если числитель равен нулю, а знаменатель отличен от нуля. Для решения такого уравнения необходимо либо решить систему (числитель равен нулю, знаменатель отличен от нуля), либо найти нули числители и выбрать из них те, при которых знаменатель не равен нулю.
2x^2 + 3x + 1 = 0;
D = 9 - 8 = 1;
x = (-3±1)/4
x = -1 ИЛИ x = -1/2.
Подставим полученные значения в знаменатель.
x = -1: -1 + 2 -3 +2 = 0 - не корень исходного уравнения.
2) ( 3x + 3y) - bx - by = 3(x + y) - b(x + y) = (x+y)(3 - b)
3) (4n - 4) + ( c - nc) = 4( n - 1) + c( 1 - n) = (4 - c)(n - 1)
4) ( x⁷ + x³) - 4x⁴ - 4 = x³(x⁴ + 1) - 4( x⁴ + 1) = (x⁴+1)( x³ - 4)
5) (6mn - 3m) + ( 2n - 1) = 3m( 2n - 1) + ( 2n - 1)=(2n - 1)(3m + 1)
6) (4a⁴ - 8a) +(10y - 5ya³) = 4a(a³ - 2) + 5y(2 - a³) = (4a - 5y)(a³ - 2)
7) a²b² - a + ab² - 1 = (a²b² + ab²) - (a + 1) = ab²(a + 1) - (a+1)=(a+1)(ab² - 1)
8) (xa - xb²) + (zb² - za) - ya + yb² = x(a-b²)+z(b² -a) - y(a -b²)=(x - z - y)(a - b²)
Дробь равна нулю, если числитель равен нулю, а знаменатель отличен от нуля. Для решения такого уравнения необходимо либо решить систему (числитель равен нулю, знаменатель отличен от нуля), либо найти нули числители и выбрать из них те, при которых знаменатель не равен нулю.
2x^2 + 3x + 1 = 0;
D = 9 - 8 = 1;
x = (-3±1)/4
x = -1 ИЛИ x = -1/2.
Подставим полученные значения в знаменатель.
x = -1: -1 + 2 -3 +2 = 0 - не корень исходного уравнения.
x = -1/2: -1/8 + 1/2 - 3/2 + 2 ≠ 0 - корень исходного уравнения.
ответ: -1/2.