В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
okrushko
okrushko
31.12.2021 06:31 •  Алгебра

У трикутнику АВС, АВ=5, АС \sqrt[2]{5}
ВС=
знайдіть косинус кута А


\sqrt{5}

Показать ответ
Ответ:
lasyaaa
lasyaaa
21.04.2021 21:19
Разложение многочлена на множители вынесения общего множителя за скобкиВынести за скобки общий множитель: 4х4 – 8х3 + 2х2 -18х.1) Каждый член многочлена 4х4 – 8х3 + 2х2 -18х можно заменить произведением двух множителей, один из которых равен 2х: 2х×2х3 – 2х×4х2 + 2х×х -2х×9.2) Воспользуемся распределительным законом умножения и вынесем 2х - общий множитель  за скобки: 2х(2х3 – 4х2+ ×х -9).Получим:  4х4 – 8х3 + 2х2 -18х= 2х(2х3 – 4х2 + ×х -9).
Разложение многочлена на множители группировкиЕсли члены многочлена не имеют общего множителя, отличного от 1, то можно попытаться разложить такой многочлен группировки.Для этого надо объединить в группы те члены, которые имеют общие множители, и вынести за скобки общий член каждой группы. Если после таких преобразований окажется общий множитель у всех получившихся групп, то его вынести за скобки.
Разложить многочлен на множители: 10ay – 5cy +2ax-cx.1) Объединим в первую группу  10ay и 2ax, а во вторую группу -5cy и -cx: (10ay и 2ax) + (-5cy и -cx) .2) В первой группе вынесем за скобки общий множитель 2а, во второй группе вынесем за скобки общий множитель -с: 2а(5у+х)-с(5у+х).3) Как видим, оба члена многочлена имеют общий множитель (5y+х), вынесем его за скобки: (5y+х)(2а-с).Получим:  10ay – 5cy +2ax-cx= (5y+х)(2а-с).ответ а)м^2-2м+1-н^2-5н+25 б)(3+с)^2
0,0(0 оценок)
Ответ:
ainurpandaa
ainurpandaa
04.03.2021 16:39
Х в четвертой степени=(х-2)в квадрате
Если а² = b², то обязательно a = плюс-минус b (прости, я не нашла значка плюс-минус). Т.е. мы можем утверждать, что 
x² = x - 2 или x² = 2 - x.
Решим оба уравнения.
x² = x - 2
x² - x + 2 = 0
D = (-1)² - 4·1·2 = 1 - 8 = -7. Так как дискриминант отрицательный, действительных решений уравнение не имеет.
Теперь решаем второе уравнение:
x² = 2 - x
x² + x - 2 = 0
D = 1² - 4·1·(-2) = 1 + 8 = 9. Дискриминант положительный, т.е. уравнение имеет два корня:
x = (-1 плюс-минус √D) / 2·1 = 1/2 · (-1 плюс-минус 3)
x_{1} = 1/2 · (-1 + 3) = 1/2 · 2 = 1
x_{2} = 1/2 · (-1 - 3) = 1/2 · (-4) = -2

проверка:
1x^{4} = (1 - 2)²
1 = (-1)² 
1 = 1

(-2)x^{4} = (-2- 2)²
16 = (-4)²
16 = 16
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота