Решим задачу на нахождение времени, скорости, расстояния
Дано:
S=30 км
v(течения)=2 км/час
t(мот. лодка) = через 1 ч.
t(встречи)=2 ч.
Найти:
v(лодки)=? км/час
Решение
МАТЕМАТИЧЕСКИЙ
1) Посчитаем, сколько всего времени плыл плот до встречи с моторной лодкой, зная что он отправился из пункта А на 1 час раньше и был ещё в пути 2 часа:
1+2=3 (часа) - плыл плот до встречи с моторной лодкой.
2) Посчитаем сколько км проплыл плот за 3 часа, зная что он проплыл по течению реки, скорость которой равна скорости плота v(теч.)=v (плота)= 2 км/час
S(расстояние)=v(скорость)×t(время)=2×3=6 (км) - проплыл плот до встречи с катером.
2) Вычислим какое расстояние проплыла моторная лодка за 2 часа, зная что плот проплыл из 30 км только 6 км:
30-6=24 (км) - за два часа проплыла моторная лодка.
Пусть х км/час - собственная скорость моторной лодки. Значит, скорость лодки против течения реки составит х-2 км/час. Скорость плота равна скорости течения реки v(плота)=2 км/час.
Моторная лодка была в пути 2 часа и проплыла 2×(х-2) км.
Плот плыл 1 час +2 часа =3 часа и преодолел расстояние 3×2 =6 км.
Расстояние между ними составляло 30 км.
Составим и решим уравнение:
2×(х-2)+6=30
2х-4=30-6
2х-4=24
2х=24+4
2х=28
х=28÷2=14 (км/час) - собственная скорость катера.
ответ: собственная скорость катера равна 14 км/час.
Б) f(x)=4-2x f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (-2) f`(0,5)=f`(-3)=-2
в) f(x)=3x-2 f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (3) f`(5)=f`(-2)=3
Объяснение:
Решим задачу на нахождение времени, скорости, расстояния
Дано:
S=30 км
v(течения)=2 км/час
t(мот. лодка) = через 1 ч.
t(встречи)=2 ч.
Найти:
v(лодки)=? км/час
Решение
МАТЕМАТИЧЕСКИЙ
1) Посчитаем, сколько всего времени плыл плот до встречи с моторной лодкой, зная что он отправился из пункта А на 1 час раньше и был ещё в пути 2 часа:
1+2=3 (часа) - плыл плот до встречи с моторной лодкой.
2) Посчитаем сколько км проплыл плот за 3 часа, зная что он проплыл по течению реки, скорость которой равна скорости плота v(теч.)=v (плота)= 2 км/час
S(расстояние)=v(скорость)×t(время)=2×3=6 (км) - проплыл плот до встречи с катером.
2) Вычислим какое расстояние проплыла моторная лодка за 2 часа, зная что плот проплыл из 30 км только 6 км:
30-6=24 (км) - за два часа проплыла моторная лодка.
3) Посчитаем скорость лодки против течения реки:
24÷2=12 (км/час)
4) Значит собственная скорость лодки равна:
v(против течения)=v(собст.) - v(течения)
отсюда
v(собств.)=v(течения)+v(против течения)=2+12=14 (км/час)
ответ: собственная скорость лодки равна 14 км/час
АЛГЕБРАИЧЕСКИЙ
Пусть х км/час - собственная скорость моторной лодки. Значит, скорость лодки против течения реки составит х-2 км/час. Скорость плота равна скорости течения реки v(плота)=2 км/час.
Моторная лодка была в пути 2 часа и проплыла 2×(х-2) км.
Плот плыл 1 час +2 часа =3 часа и преодолел расстояние 3×2 =6 км.
Расстояние между ними составляло 30 км.
Составим и решим уравнение:
2×(х-2)+6=30
2х-4=30-6
2х-4=24
2х=24+4
2х=28
х=28÷2=14 (км/час) - собственная скорость катера.
ответ: собственная скорость катера равна 14 км/час.
f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (-2)
f`(0,5)=f`(-3)=-2
в) f(x)=3x-2
f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (3)
f`(5)=f`(-2)=3