В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
яна1766
яна1766
21.05.2021 03:02 •  Алгебра

У выражение и заполните пропуски. Найдите его значение при x= -2,5
(x+3)(x-3)-(x+9)^2=*х^2+*х+=

Показать ответ
Ответ:
12345678901456619353
12345678901456619353
26.02.2020 13:22
Интересная задачка.

Для того, чтобы начать решать эту задачу, нам необходимо найти такую последовательность, которая приносила бы нам всегда удачу! Из условия ясно, что начинающий должен ходить первый. Можно предложить такой вариант ходов: 
Начинающий должен взять один карандаш. Остается 17 штук. Какое бы количество карандашей ни взял противник, обязательно нужно оставить 13 карандашей на столе. По такому же раскладу, надо оставить 9 карандашей, а затем 5. Какое бы количество карандашей не взял соперник, начинающий всегда сможет оставить ему 1 карандаш.
0,0(0 оценок)
Ответ:
andreybilyy16
andreybilyy16
27.09.2020 15:04
3^1 = 3, \ 3^2 = 9, \ 3^3 = 27, \ 3^4 = 81

Чередуются цифры: 3, 9, 7, 1.
Если показатель степени с основанием 3 делится нацело на 4, то последняя цифра числа равна 1 (соответственно, если при делении на 4 степени числа даёт остаток 1, 2 или 3, то число оканчивается на 3, 9 или 7).

7^1 = 7, \ 7^2 = 49, \ 7^3 = 343, \ 7^4 = 2401

Чередуются цифры: 7, 9, 3, 1.
Если показатель степени с основанием 7 делится нацело на 4, то последняя цифра числа равна 1 (соответственно, если при делении на 4 степени числа даёт остаток 1, 2 или 3, то число оканчивается на 7, 9 или 3).

16 = 4*4 + 0, следовательно, числа 3^{16} и 7^{16} оканчиваются на 1, а их сумма (...1 + ...1) на 2.

Для таких рассуждений есть строгие формальные обозначения, но их далеко не всегда проходят в школе. Вот так выглядит более строгое решение:

3 \equiv 3 \ (\mod 10 \ ), \ 3^2 \equiv 9 \ (\mod 10 \ )\\\\
3^4 \equiv 81 \ (\mod 10 \ ), \ 81 \equiv 1 \ ( \mod 10 \ ) \Rightarrow 3^4 \equiv 1 \ (\mod 10 \ )\\\\
3^{16} \equiv 1 \ (\mod 10 \ )

7 \equiv 7 \ (\mod 10 \ ), \ 7^2 \equiv 49 \ (\mod 10 \ )\\\\
7^4 \equiv 2401 \ (\mod 10 \ ), \ 2401 \equiv 1 \ ( \mod 10 \ ) \Rightarrow 7^4 \equiv 1 \ (\mod 10 \ )\\\\
7^{16} \equiv 1 \ (\mod 10 \ )\\\\
3^{16} + 7^{16} \equiv 1 + 1 \ (\mod 10 \ )\\\\
3^{16} + 7^{16} \equiv 2 \ (\mod 10 \ )
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота