ответ:
y' = 4x^3-4x
приравниваем ее к нулю:
4x^3-4x = 0
x1 = 0
x2 = -1
x3 = 1
вычисляем значения функции
f(0) = 8
f(-1) = 7
f(1) = 7
fmin = 7, fmax = 8
используем достаточное условие экстремума функции одной переменной. найдем вторую производную:
y'' = 12x^2-4
вычисляем:
y''(0) = -4< 0 - значит точка x = 0 точка максимума функции.
y''(-1) = 8> 0 - значит точка x = -1 точка минимума функции.
y''(1) = 8> 0 - значит точка x = 1 точка минимума функции.
объяснение:
ответ:
y' = 4x^3-4x
приравниваем ее к нулю:
4x^3-4x = 0
x1 = 0
x2 = -1
x3 = 1
вычисляем значения функции
f(0) = 8
f(-1) = 7
f(1) = 7
fmin = 7, fmax = 8
используем достаточное условие экстремума функции одной переменной. найдем вторую производную:
y'' = 12x^2-4
вычисляем:
y''(0) = -4< 0 - значит точка x = 0 точка максимума функции.
y''(-1) = 8> 0 - значит точка x = -1 точка минимума функции.
y''(1) = 8> 0 - значит точка x = 1 точка минимума функции.
объяснение:
D(f)∈(-∞;∞)
Асимптот нет,непериодическая
f(-x)=-x³+12x=-(x³-12x)
f(x)=-f(-x) нечетная
x=0 y=0
y=0 x(x²-12)=0 x=0 x=2√3 x=-2√3
(0;0);(2√3;0);(-2√3;0)-точки пересечения с осями
f`(x)=3x²-12=3(x-2)(x+2)=0
x=2 x=-2
+ _ +
(-2)(2)
возр max убыв min возр
уmax=-8+24=16
ymin=8-24=-16
f``(x)=6x=0
x=0 y=0
(0;0)-точка перегиба
- +
(0)
выпукл вверх вогнута вниз