Скорость третьего Х отрывается все от временной точки, когда третий догонит второго (время t) (первый ехал на 1 час больше (t+1) третий на один час меньше (t-1), это когда 15*t=X*(t-1) (их пройденные пути выравняются) второе уравнение 21*(t+9+1)=X(t+9-1) итого система 15t=Xt-X -> 15t-Xt=-X -> t(15-X)=-X -> t=-X/(15-X) =X/(X-15) 21t+210=Xt+8X (во второе подставим t) 21X/(X-15)+210=(X^2)/(X-15)+8X избавляемся от знаменателя (Х-15) 21X +210(X-15)=X^2+8X(X-15) 21X+210X-3150=X^2+8X^2-120X все вправо 9x^2-351x+3150=0 (сократим на 9) x^2-39x+350=0
D=1521-1400=121 (корень 11) x1=(39+11)/2=25 x2=(39-11)/2=14 (заведомо неверный, поскольку его скорость явно выше скорости первого (21), раз он его догнал) итого Х=25 км/ч
Объяснение:7x2 + 10x + 5 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 102 - 4·7·5 = 100 - 140 = -40
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 23x + 15 = 0
D = b2 - 4ac = (-23)2 - 4·4·15 = 529 - 240 = 289
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 23 - √289/ 2·4 = 23 - 17 /8 = 6/ 8 = 0.75
x2 = 23 + √289 /2·4 = 23 + 17/ 8 = 40 /8 = 5
25x2 - 40x + 16 = 0
D = b2 - 4ac = (-40)2 - 4·25·16 = 1600 - 1600 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительный корень:
x = 40/ 2·25 = 0.8
отрывается все от временной точки, когда третий догонит второго (время t) (первый ехал на 1 час больше (t+1) третий на один час меньше (t-1), это когда
15*t=X*(t-1) (их пройденные пути выравняются)
второе уравнение 21*(t+9+1)=X(t+9-1)
итого система
15t=Xt-X -> 15t-Xt=-X -> t(15-X)=-X -> t=-X/(15-X) =X/(X-15)
21t+210=Xt+8X (во второе подставим t) 21X/(X-15)+210=(X^2)/(X-15)+8X
избавляемся от знаменателя (Х-15)
21X +210(X-15)=X^2+8X(X-15)
21X+210X-3150=X^2+8X^2-120X все вправо
9x^2-351x+3150=0 (сократим на 9)
x^2-39x+350=0
D=1521-1400=121 (корень 11)
x1=(39+11)/2=25
x2=(39-11)/2=14 (заведомо неверный, поскольку его скорость явно выше скорости первого (21), раз он его догнал)
итого Х=25 км/ч