В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Jkbts
Jkbts
13.07.2022 17:26 •  Алгебра

Участок земли имеет прямоугольную форму. Одна сторона на 16 метров меньше другой. Площадь участка равна 720 м². Найди периметр участка и узнай сколько штук пеноблоков тебе понадобится для строительства дома, если длина одного блока 4 метра.

Показать ответ
Ответ:
Мария111111121
Мария111111121
19.11.2020 22:05
1) (16x^2 - 64x) - (9y^2 + 54y) - 161 = 0
16(x^2 - 4x + 4) - 64 - 9(y^2 + 6y + 9) + 81 = 161
16(x - 2)^2 - 9(y + 3)^2 = 16
(x - 2)^2 - (y + 3)^2 / (16/9) = 1
Это гипербола с центром A(2; -3) и полуосями a = 1; b = √(16/9) = 4/3

2) y = cos(x + y)
y' = -sin(x + y)*(1 + y') = -sin(x + y) - y'*sin(x + y)
y' + y'*sin(x + y) = -sin(x + y)
y' = - sin(x+y) / (1 + sin(x+y))

3) (1+x^2) dy - 2xy dx = 0
(1+x^2) dy = 2xy dx
dy/y = 2x dx / (1+x^2)
Интегрируем обе части
\int { \frac{dy}{y} }=ln|y|
\int { \frac{2xdx}{1+x^2} }=|1+x^2=t;dt=2xdx|=\int \frac{dt}{t} =ln|t|+C=ln|1+x^2|+lnC
ln |y| = ln |1+x^2| + ln C
y = C(1 + x^2)
Решаем задачу Коши.
y(-1) = C(1 + (-1)^2) = 2C = 4
C = 2
y = 2(1 + x^2)
0,0(0 оценок)
Ответ:
dalakovadg
dalakovadg
26.04.2020 14:52
Логарифм единицы.loga1=0         Логарифм единицы равен нулю ( а>0, a≠1).Примеры. Вычислить:1) log71=0,                                2) lg1=0,                                     3) ln1=0,так как  70=1.                            так как 100=1.                             так как е0=1.4) 52log51=52∙0=50=1.            5) 43lg1=43∙0=40=1.          6) 85ln1=85∙0=80=1. e3+5lg1=e3+5∙0=e3. 106ln1-2=106∙0-2=10-2=0,01. 35lg1+4=35∙0+4=34=81.Решить уравнение.1) log2(x+4)=log81;                        2) log3(x-1)+5log181=log12(5∙0,2);log2(x+4)=0;                                         log3(x-1)+5∙0=log121;x+4=20;                                                log3(x-1)=0;x+4=1;                                                  x-1=30;x=1-4;                                                   x-1=1;x=-3.                                                     x=2.3) lg (2x+1) -7log21=ln1;lg (2x+1) -7∙0=0;lg (2x+1)=0;2x+1=100;2x+1=1;2x=0;x=0.11.4.4. Натуральный логарифмЛогарифм по основанию е (Неперово число е≈2,7) называют натуральным логарифмом.ln7=loge7,          ln7 – натуральный логарифм числа 7.Примеры.Вычислить, используя определение логарифма.1) lne².  По определению натуральный логарифм числа e² — это показатель степени, в которую нужно возвести число е, чтобы получить число е². Очевидно, что это число 2. lne²=2.2) ln (1/e). По определению натуральный логарифм числа 1/е — это показатель степени, в которую нужно возвести число е, чтобы получить 1/е. Очевидно, что это число -1, так как е-1=1/е.ln (1/e)=-1.3) lne3+lne4=3+4=7.4) lne-ln (1/e2)=1- (-2)=1+2=3.Вычислить, применив основное логарифмическое тождество: и формулу возведения степени в степень: (am)n=amn=(an)m .1)    eln24=24.2)    e2ln11=(eln11)2=112=121.3)    e-ln20=(eln20)-1=20-1=1/20=0,05.4)    (e4)ln5=(eln5)4=54=625.Упростить, применив основное логарифмическое тождество: формулу возведения степени в степень: (am)n=amn=(an)m ;формулу произведения степеней с одинаковыми основаниями:  am∙an=am+n и формулу возведения в степень произведения: (a∙b)n=an∙bn.1)    eln4+2=eln4∙e2=4∙e2=4e2.2)    e1+ln3=e1∙eln3=e∙3=3e.3)    (e4+ln5)2=(e4∙eln5)2=(e4∙5)2=e4∙2∙52=e8∙25=25e8.4)    (eln2+3)4=(eln2∙e3)4=(2∙e3)4=24∙e3∙4=16e12.Упростить, применив основное логарифмическое тождество:  формулу возведения степени в степень: (am)n=amn=(an)m ; формулу частного степеней с одинаковыми основаниями:  am:an=am-n  и формулу возведения в степень произведения: (a∙b)n=an∙bn.1)    e2-ln3=e2:eln3=e2:3=e2/3.2)    e1-ln5=e1:eln5=e:5=e/5=0,2e.3)    (e5-ln10)3=(e5:eln10)3=(e5:10)3=(0,1e5)3=0,13∙e5∙3=0,001e15.4)    (e3-ln2)4=(e3:eln2)4=(e3:2)4=(0,5e3)4=(0,5)4∙(e3)4=0,0625e12. 11.4.3. Десятичный логарифмЛогарифм по основанию 10 называют десятичным логарифмом и при написании опускают основание 10 и букву «о» в написании слова «log».lg7=log107,        lg7 – десятичный логарифм числа 7.Примеры. Вычислить:lg10; lg100; lg1000; lg0,1; lg0,01; lg0,001.1)    lg10=1,  так как 101=10.2)    lg100=2, так как102=100.3)    lg1000=3, так как 103=1000.4)    lg0,1=-1, так как 10-1=1/10=0,1.5)    lg0,01=-2, так как 10-2=1/102=1/100=0,01.6)    lg0,001=-3, так как 10-3=1/103=1/1000=0,001.Найти значение выражения: 10lg8;  10lg4+10lg3,5;  105lg2;  100lg3;  10lg5+2;  10lg60-1.Используем:основное логарифмическое тождество:(см. предыдущий урок 11.4.2. «Примеры на основное логарифмическое тождество»здесь)формулу произведения степеней с одинаковыми основаниями: am∙an=am+n,формулу частного степеней с одинаковыми основаниями: am:an=am— n1)    10lg8=82)    10lg4+10lg3,5=4+3,5=7,5.3)    105lg2=(10lg2)5=25=32.4)    100lg3=(102)lg3=(10lg3)2=32=9.5)    10lg5+2=10lg5∙102=5∙100=500.6)    10lg60-1=10lg60:101=60:10=6.Решить уравнение.1)    lgx=10lg30-1.Упростим правую часть равенства как в предыдущих примерах.lgx=10lg30:101;lgx=30:10;lgx=3;x=103;x=1000.2)    lg (x+3)=2.x+3=102;x+3=100;x=100-3;x=97.3)    lg (x+5)=-1.x+5=10-1;x+5=0,1;x=0,1-5;x=-4,9.11.4.2. Примеры на основное логарифмическое тождество Это основное логарифмическое тождество.Это тождество следует из определения логарифма: так как логарифм – это показатель степени (n), то, возводя в эту степень число а, получим число b.Примеры.Вычислить:  При решении  используем формулу возведения степени в степень: (am)n=amn=(an)m  и основное логарифмическое тождество.Найти значение выражения:  Используем формулу произведения степеней с одинаковыми основаниями: am∙an=am+n и основное логарифмическое тождество.Найти значение выражения:Используем формулу частного степеней с одинаковыми основаниями: am:an=am— nи основное логарифмическое тождество.11.4.1. Определение логарифмаЛогарифмом числа b по основанию а (logab)  называют показатель степени, в которую нужно  возвести число а, чтобы получить число b.logab=n, если an=b. Примеры: 1) log28=3, т. к. 23=8;2) log5(1/25)=-2, т. к. 5-2=1/52=1/25;                         3) log71=0, т. к. 70=1. Вычислить:1)    log464+log525.  Используем значения степеней: 43=64, 52=25 и определение логарифма.log464+log525=3+2=5.2)    log2log381.        Используем значения степеней: 34=81, 22=4 и определение логарифма.log2log381=log24=2.3)    log5log9log2512.    Используем значения степеней: 29=512, 50=1 и определение логарифма.log5log9log2512=log5log99=log51=0.Решить уравнение.1)    log7x=2.          По определению логарифма составим равенство: x=72, отсюда х=49.2)    log3(x-5)=2.По определению логарифма:х-5=32;х-5=9;х=9+5;х=14.3)    |log6(x+4)|=2.Освободимся от знака модуля.или  log6(x+4) =2;x+4=62;x+4=36;x=36-4;x=32.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота