Ученики средней школы собирали макулатуру.В первом ящике а кг,а во втором -60% от веса первом ящике.Если во втором ящике положить 18 кг,то в первом ящике станет 1,5 раща меньше макулатуры.чем во втором .Сколько макулатуры было в каждом ящике первоночално. НУЖНО
x−3∣≥1.8
x-3 \geq 1.8x−3≥1.8 или x-3 \leq -1.8x−3≤−1.8
x \geq 1.8+3x≥1.8+3 или x \leq -1.8+3x≤−1.8+3
x \geq 4.8x≥4.8 или x \leq 1.2x≤1.2
[1.2][4.8]
xx ∈ (-(− ∞ ;1.2];1.2] ∪ [4.8;+[4.8;+ ∞ ))
2)
|2-x|\ \textgreater \ \frac{1}{3}∣2−x∣ \textgreater 31
2-x\ \textgreater \ \frac{1}{3}2−x \textgreater 31 или 2-x\ \textless \ - \frac{1}{3}2−x \textless −31
-x\ \textgreater \ \frac{1}{3}-2−x \textgreater 31−2 или -x\ \textless \ - \frac{1}{3} -2−x \textless −31−2
x\ \textless \ 1 \frac{2}{3}x \textless 132 или x\ \textgreater \ 2 \frac{1}{3}x \textgreater 231
(1 2/3)(2 1/3)
xx ∈ (-(− ∞ ;1\frac{2}{3});132) ∪ (2\frac{2}{3};+(232;+ ∞ ))
3)
| 3-x|\ \textless \ 1.2∣3−x∣ \textless 1.2
\left \{ {{3-x\ \textless \ 1.2} \atop {3-x\ \textgreater \ -1.2}} \right.{3−x \textgreater −1.23−x \textless 1.2
\left \{ {{-x\ \textless \ 1.2-3} \atop {-x\ \textgreater \ -1.2-3}} \right.{−x \textgreater −1.2−3−x \textless 1.2−3
\left \{ {{-x\ \textless \ -1.8} \atop {-x\ \textgreater \ -4.2}} \right.{−x \textgreater −4.2−x \textless −1.8
\left \{ {{x\ \textgreater \ 1.8} \atop {x\ \textless \ 4.2}} \right.{x \textless 4.2x \textgreater 1.8
(1.8)(4.2)
xx ∈ (1.8;4.2)(1.8;4.2)
4)
|4+x | \leq 1.8∣4+x∣≤1.8
\left \{ {{4+x \leq 1.8} \atop { 4+x \geq -1.8}} \right.{4+x≥−1.84+x≤1.8
Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, , но сейчас это не нужно), нам повезло, это 32
Учитываем, что , получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.