Площадь - интеграл между двумя точками пересечения графиков этих функций по функции 2x^2 (это видно если нарисовать их) точки пересечения можно найти решив систему из этих двух уравнений достаточно эти функции приравнять 2x^2 = 4x x^2 = 2x x = 2 и x = 0 (в второй строке мы поделили на x, это значит что дальнейшее решение не будет учитывать что x = 0 (поскольку на ноль делить нельзя), следовательно нужно дополнить ответ выражением x = 0) это и есть две точки пересечения заданных функций остается вычислить интеграл
поскольку нам необходимо найти площадь между ДВУМЯ функциями, то этого недостаточно, ведь мы нашли площадь между функцией 2x^2 и осью Ox этот же интеграл нужно взять и у 4x
искомая площадь - разница двух только что найденных
точки пересечения можно найти решив систему из этих двух уравнений
достаточно эти функции приравнять
2x^2 = 4x
x^2 = 2x
x = 2 и x = 0
(в второй строке мы поделили на x, это значит что дальнейшее решение не будет учитывать что x = 0 (поскольку на ноль делить нельзя), следовательно нужно дополнить ответ выражением x = 0)
это и есть две точки пересечения заданных функций
остается вычислить интеграл
поскольку нам необходимо найти площадь между ДВУМЯ функциями, то этого недостаточно, ведь мы нашли площадь между функцией 2x^2 и осью Ox
этот же интеграл нужно взять и у 4x
искомая площадь - разница двух только что найденных
В решении.
Объяснение:
Преобразуйте выражение в многочлен стандартного вида.
Привести многочлен к стандартному виду, значит, привести подобные члены и расположить одночлены в порядке убывания степеней, от большей к меньшей.
а) 3х² - (2 + 3х — 5х²) =
= 3х² - 2 - 3х + 5х² =
= 8х² - 3х - 2.
б) 4 + (-х + 5х²) + 2х =
= 4 - х + 5х² + 2х =
= 5х² + х + 4.
в) х -(4 +3х — х²) + (2 — х²) =
= х - 4 - 3х + х² + 2 - х² =
= -2х - 2.
г) 5 + (2х² - х) — (4х² + 5 ) + х =
= 5 + 2х² - х - 4х² - 5 + х =
= -2х². Многочлен преобразуется в одночлен.