в правильной 4-угольной пирамиде сечение проведенное через середину высоты и параллельное основанию разделит пополам и все ребра пирамиды. т. к. средняя линия треугольника в 2 раза меньше основания, то каждая сторона верхнего сечения меньше стороны основания в 2 раза. если сторона основания , то сторона сечения . тогда площадь основания , а площадь сечения
пощадь верхнего сечения меньше площади в основания в раз. тогда
значит площадь сечения в четыре раза меньше площади основания
в правильной 4-угольной пирамиде сечение проведенное через середину высоты и параллельное основанию разделит пополам и все ребра пирамиды. т. к. средняя линия треугольника в 2 раза меньше основания, то каждая сторона верхнего сечения меньше стороны основания в 2 раза. если сторона основания , то сторона сечения . тогда площадь основания , а площадь сечения
пощадь верхнего сечения меньше площади в основания в раз. тогда
значит площадь сечения в четыре раза меньше площади основания
1. Разделим обе части тригонометрического неравенства на √3 и освободимся от иррациональности в знаменателе:
√3tg(3x + π/6) < 1;
tg(3x + π/6) < 1/√3;
tg(3x + π/6) < √3/3.
2. Функция тангенс имеет период π, на промежутке (-π/2, π/2) возрастает, а значение √3/3 принимает в точке π/6:
3x + π/6 ∈ (-π/2 + πk, π/6 + πk), k ∈ Z;
3x ∈ (-π/2 - π/6 + πk, π/6 - π/6 + πk), k ∈ Z;
3x ∈ (-2π/3 + πk, πk), k ∈ Z;
x ∈ (-2π/9 + πk/3, πk/3), k ∈ Z.
ответ: (-2π/9 + πk/3, πk/3), k ∈ Z.
если не правильно, напишите в коменты(