Линейной функцией называется функция вида y=kx+b а) у = 2х и у = 2х – 4 - графики параллельны, поскольку их угловые коэффициенты (k) равны, следовательно, они не пересекаются и не имеют общих точек. б) у = х + 3 и у = 2х – 1 - графики пересекаются, поскольку их угловые коэффициенты различны. Найдем точку пересечения, приравняв правые части: х + 3 = 2х – 1 x=4, y=4+3=7. Координаты точки пересечения - (4;7). в) у = 0,5х + 8 и у =21х + 8 - графики пересекаются, поскольку их угловые коэффициенты различны. Поскольку и в первом, и во втором случае b=8, то точка пересечения графиков - (0,b) - (0;8). г) у = 2х – 2 и у = -0,5х + 3 - графики пересекаются, поскольку их угловые коэффициенты различны. Найдем точку пересечения, приравняв правые части: 2х – 2 = -0,5х + 3 2,5x=5 x=2, y=2*2-2=2. Координаты точки пересечения - (2;2).
1) ОДЗ: 1≤х≤4 решение - графическое... нужно ведь не корни найти, а количество корней))) одна функция монотонно убывает, другая монотонно возрастает, они если и пересекутся, то всего лишь ОДИН раз. ответ: один корень 2) ОДЗ: х>0; x≠1 (log(5)x)³ + 3(log(5)x)² = -2*log(5)x использована формула перехода к логарифму по новому основанию (log(5)x)³ + 3(log(5)x)² + 2*log(5)x = 0 log(5)x*((log(5)x)² + 3*log(5)x + 2) = 0 1. log(5)x = 0 ---> x=1 ---посторонний корень (вне ОДЗ) в скобках --квадратное уравнение относительно log(5)x по т.Виета корни (-2) и (-1) log(5)x = -2 ---> x₁ = 0.04 log(5)x = -1 ---> x₂ = 0.2
а) у = 2х и у = 2х – 4 - графики параллельны, поскольку их угловые коэффициенты (k) равны, следовательно, они не пересекаются и не имеют общих точек.
б) у = х + 3 и у = 2х – 1 - графики пересекаются, поскольку их угловые коэффициенты различны.
Найдем точку пересечения, приравняв правые части:
х + 3 = 2х – 1
x=4, y=4+3=7.
Координаты точки пересечения - (4;7).
в) у = 0,5х + 8 и у =21х + 8 - графики пересекаются, поскольку их угловые коэффициенты различны.
Поскольку и в первом, и во втором случае b=8, то точка пересечения графиков - (0,b) - (0;8).
г) у = 2х – 2 и у = -0,5х + 3 - графики пересекаются, поскольку их угловые коэффициенты различны.
Найдем точку пересечения, приравняв правые части:
2х – 2 = -0,5х + 3
2,5x=5
x=2, y=2*2-2=2.
Координаты точки пересечения - (2;2).
решение - графическое...
нужно ведь не корни найти, а количество корней)))
одна функция монотонно убывает, другая монотонно возрастает,
они если и пересекутся, то всего лишь ОДИН раз.
ответ: один корень
2) ОДЗ: х>0; x≠1
(log(5)x)³ + 3(log(5)x)² = -2*log(5)x
использована формула перехода к логарифму по новому основанию
(log(5)x)³ + 3(log(5)x)² + 2*log(5)x = 0
log(5)x*((log(5)x)² + 3*log(5)x + 2) = 0
1. log(5)x = 0 ---> x=1 ---посторонний корень (вне ОДЗ)
в скобках --квадратное уравнение относительно log(5)x
по т.Виета корни (-2) и (-1)
log(5)x = -2 ---> x₁ = 0.04
log(5)x = -1 ---> x₂ = 0.2