В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
STALKER147
STALKER147
03.10.2022 12:51 •  Алгебра

Укажите номер наибольшего члена последовательности xn=(n−1)/(n^2+5), если n — натуральное число, меньшее 2015. если таких членов несколько, то в ответе сумму их номеров.

Показать ответ
Ответ:
iNNA9078
iNNA9078
05.10.2020 15:32
Рассмотрим функцию f(t) = (t - 1)/(t^2 + 5). Она определена и непрерывна вместе со всеми производными на всей действительной оси.
f'(t) = ((t^2 + 5) - 2t(t - 1))/(t^2 + 5)^2 = (6 - (t - 1)^2)/(t^2 + 5)^2
f'(t) >= 0 при 1 - sqrt(6) <= t <= 1 + sqrt(6) - на этом отрезке она возрастает, вне него - убывает.
Тогда xn возрастает при n < 1 + sqrt(6), убывает при n > 1 + sqrt(6). Так как 3 < 1 + sqrt(6) < 4, то на роль максимального претендуют x3 и x4.

x3 = (3 - 1)/(3^2 + 5) = 2/14 = 1/7
x4 = (4 - 1)/(4^2 + 5) = 3/21 = 1/7

x3 = x4, значит, членов с максимальными значениями 2: n = 3 и n = 4. В ответ пойдёт 3 + 4 = 7.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота